


SEL 73-043

AMPLITUDE VARIATIONS OF WHISTLER-MODE SIGNALS CAUSED BY THEIR

INTERACTION WITH ENERGETIC ELECTRONS OF THE MAGNETOSPHERE

by

L. C. Bernard

December 1973

Technical Report No. 3465-2

Prepared under

Air Force Office of Scientific Research

Contract F44620-72-C-0058
and

National Aeronautics and Space Administration

Grant NGL 05-020-008

Radioscience Laboratory

Stanford Electronics Laboratories
Stanford University Stanford, California



ABSTRACT

Whistler mode waves that propagate through the magnetosphere

exchange energy with energetic electrons by wave-particle interaction

mechanisms. Using linear theory, a detailed investigation is presented

of the resulting amplitude variations of the wave as it propagates.

Arbitrary wave frequency and direction of propagation are considered. A

general class of electron distributions that are nonseparable in particle

energy and pitch-angle is proposed. Comparison with data is obtained

by computing the total amplitude variation between two locations along

the wave ray path. It is found that the proposed distribution model is

consistent with available whistler and particle observations. In

particular, this model yields insignificant amplitude variation over a

large frequency band, a feature commonly observed in whistler data.

This feature of the data implies a certain equilibrium between waves and

particles in the magnetosphere over a wide spread of particle energy,

at least during certain (magnetically quiet) times, and is relevant to

plasma injection experiments. Application of our analysis for monitoring

the distribution of energetic electrons in the magnetosphere is discussed.
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LIST OF PRINCIPAL NOTATIONS

B = Magnetic (induction) field

B0 = Earth's static magnetic field

B1 = Wave magnetic field

c = Velocity of light in free space 3X108 m/s

D = Electric induction field or whistler dispersion

e = Elementary charge (positive) = 1.602x10-19 C; in subscript refers
to electrons

E = Electric field; in subscript, refers to equatorial values

f = Particle distribution function or wave frequency (Hz)

g = Particle distribution function normalized to unity or acceleration
of gravity

G = Whistler gain per 1000 km

G = Integrated whistler gain over a ray path

i = f/-; in subscript, refers to ions

J = Current density

k = Wave number

K = Boltzmann's constant = 1.38X10-2 3J (oK)-l

L = McIlwain geomagnetic dipole coordinate

m = Order of cyclotron harmonic

M = Particle mass

M0 = Rest particle mass

MOe = 0.91110-30 kg

MOH = Proton rest mass = 0.167x10-26 kg

n = Particle density

N = Refractive index

p = Particle momentum

q = Particle charge (algebraic)
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LIST OF PRINCIPAL NOTATIONS (cont.)

r = Geocentric distance

R, In subscript, refers to resonance

R0 = Earth radius = 6370 km

RE = Equatorial geocentric distance to dipole magnetic field lines

s, In subscript, refers to particle species

T = Temperature

v = Phase velocity

v = Group velocity

W = Energy

a = Particle pitch angle

a = <) (k,v )
g -g

B = /c

e = <) (k,o)

G = Gendrin angle

eR = Resonance cone angle

= Dielectric tensor
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c = Plasma frequency
p
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DEFINITIONS OF IMPORTANT TERMS USED THROUGHOUT THE TEXT

1. "parallel" and "perpendicular" refer to the direction of the wave

normal k with respect to the static magnetic field B-_o
2. "longitudinal" and "transverse" refer to the direction of k with

respect to electric field of the wave E

3. the subscripts II and I at the right of letters refer to vector

components along and across B respectively. Subscript II at the
--O

left of letters refer to the special case of parallel propagation.

4. the particle energy is referred to as:

"cold" or "thermal" in the approximate range: 0 - 10- 1 eV

-l
"very low" in the range: 10- eV to 100 eV

"low" in the range: 100 eV to 40 keV

"high" in the range: 40 keV and above

5. "gain" will be used for "wave amplitude variation," often with a
quantitative connotation. Positive (negative) gain means wave growth
(damping).

6. Because of inhomogeneity, a wave starting at one location may not be
able to propagate to a second location in space. The second location
is described as being "accessible" if, according to the laws of geo-
metrical optics, it can be reached by the wave.

7. The term "instability" will refer to wave amplitude variation due to
wave particle interaction.

8. The waves vary in proportion to expl[i(k.r-wt)], C = ±1.
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I. INTRODUCTION

The magnetosphere extends many earth radii above the ionosphere. It

is the region in space where the earth's magnetic field has dominant con-

trol over the motions of charged particles.

The presence of these charged particles in turn determines the

characteristics of the different electromagnetic wave modes which can

propagate in the magnetosphere. Our interest will be focused on the

"whistler" mode. The frequency range of the whistler mode extends approx-

imately between the proton and electron gyrofrequencies. Its sense of

polarization corresponds to the sense of gyration of electrons compelled

to gyrate and drift along the earth's magnetic field lines.

The charged particles can be divided into two classes according to

their energy: the 'cold' or 'thermal' particles and the 'hot' or 'ener-

getic' particles. The cold particles have a distribution approximately

-1
Maxwellian with an average energy of the order of 10-1 eV [Angerami, 1966]

and determine the ray path of a wave between two locations in the magneto-

sphere. The hot particles can generate waves [Kennel and Petscheck, 1966;

Helliwell, 1967] or cause amplitude variations of a preexisting wave along

its ray path. Such an interaction involves a possible exchange of energy

between waves and particles. This transfer of energy into the wave can

be either positive or negative, depending upon the precise values of wave,

cold, and hot plasma parameters.

Since Storey's [19531 investigation, the study of whistler wave prop-

agation characteristics has provided an invaluable diagnostic tool to

determine the distribution of thermal particles in the magnetosphere.

In contrast, the study of whistler-electron interaction characteristics

has not led to the development of a successful diagnostic tool for the
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determination of the energetic particle population. The importance of

this interaction study is considerable though. Such a study may provide

a better knowledge of the energetic particle population. It may provide

also a better understanding of the magnetospheric medium. The interaction

mechanism in itself may furnish an explanation of features of the magneto-

sphere or the generation of electromagnetic waves.

Knowledge and understanding of particle distribution characteristics

are of fundamental importance in the whole field of plasma physics, from

laboratory plasma experiments to astrophysics. In the laboratory, for

example, knowledge of particle distributions is primordial in the field

of plasma ion sources [Bernard, 1967; Benoit-Cattin and Bernard, 19681.

Understanding of wave-particle interaction mechanisms is most important

in fusion research. These mechanisms certainly play a role in astro-

physical phenomena, like pulsars.

The purpose of our work is to compute the whistler amplitude growth/

damping rates due to whistler-electron interaction, to discuss its varia-

tions with regard to all parameters of concern, and, using a number of

whistler observations, to infer possible models of the energetic electrons

of the magnetosphere.

Wave amplitude variations are due both to "instability"'1 and "accessi-

bility"2 and it is often difficult to separate the two effects. When there

is a frequency cutoff of a broadband signal, the question arises whether

the frequencies above (or below) the frequency cutoff were damped by

l"Instability, as defined here, means wave amplitude variations due to
wave-particle interaction.

2
A location in space is "accessible" if, according to geometrical optics,
it can be reached by a wave starting from another point.
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wave-particle interaction, or whether these frequencies could not propa-

gate from the location of generation to the location of reception. This

frequency cutoff phenomenon is illustrated in Figure 1.1 which represents

an example of a "nose whistler" spectrogram recorded at a ground station.

Typically, such a signal presents an upper cutoff at some frequency f u

The spectral shape of the signal is explained schematically in Figure 1.2.

A broadband wave signal is generated by a lightning discharge close to

the earth's surface. The generated frequencies are transmitted in part in

the earth-ionosphere waveguide to the receiver in the other hemisphere

where they appear on the spectrogram practically without dispersion as a

frequency impulse or "atmospheric." The generated frequencies travel also

in the magnetosphere and are guided or "ducted" along a magnetic field

line. The magnetosphere is highly dispersive, that is, different fre-

quencies travel with different velocities. As a result, the whistler has

the characteristic shape shown on Figure 1.1. Notice from the figure that

there is a characteristic frequency, namely the frequency of minimum time

delay t or "nose" frequency f . Measurements of t and f have
n n n n

provided an invaluable technique for magnetospheric diagnostics [Smith,

1960; Carpenter, 1962, 1963, 1966, 1970; Carpenter and Smith, 1964;

Carpenter et al., 1972; Helliwell, 1965; Angerami, 1966; Angerami and

Carpenter, 1966; Park, 1970, 1973; Park and Carpenter, 1970; Bernard, 1973;

Ho and Bernard, 19731.

Smith [1961], proposed an elegant explanation of the upper frequency

cutoff f . As the magnetosphere is practically a collision free medium,
u

density irregularities can exist for a long time. He showed that small

field-aligned enhancements of ionization or "ducts" can trap low frequencies

below f (path 2 on Figure 1.2), whereas high frequencies above f aim
u u
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FIGURE 1.1. TYPICAL NOSE WHISTLER SPECTROGRAM SHOWING AN UPPER FREQUENCY CUTOFF.
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FIGURE 1.2. RAY PATHS INVOLVED IN PRODUCTION OF A TYPICAL NOSE WHISTLER. Frequencies generated
t1 at point G by a lightning discharge travel in part close to the-earth along path 1

and in part along a magnetic field line along path 2 up to an upper frequency f-4 u
above which they propagate along path 3. Wave components of frequency below f can be recorded

o on the ground to point R. Frequencies above f can only be recorded on satellites.
u



untrapped at some point A (path 3) and cannot reach the receiver location

R.

Scarf [1962] proposed an alternative explanation for the upper cut-

off f based on hot plasma effects. Taking an isotropic Maxwellian
u

distribution for the hot electrons he found that whistlers could be

attenuated due to wave-particle interaction, the attenuation increasing

rapidly with frequency. Postulating that the high frequency cutoff was

indeed caused by such a mechanism, he determined in turn what should be

the temperature. He found an order of 105 OK. This analysis was subse-

quently refined by Liemohn and Scarf [1964].

Guthart [1964, 19651 then showed that a temperature p 105 oK would

produce a slight, but a measurable change in the dispersion curve f(t)

of Figure 1.1. Because he could not observe this change, he proposed

another type of distribution which would produce the observed cutoff but

no change in the curve f(t). Liemohn [1967] made a quantitative analysis

where he integrated the variation of amplitude along the field line path

(2). He chose a particle distribution function f(W,a) which was a product

of a function of W alone and a function of a alone where W and a

are respectively the particle energy and pitch-angle:

f(W,a) = W-V sinqa (1.1)

and found that a value of the parameter q = 2 would produce the right

value of frequency cutoff. He found also an increasing in amplitude just

below fu, compatible with observation. The question of whether this

cutoff is caused by accessibility or wave-particle instability was reopened

when Carpenter [1968] made a statistical study of over 500 nose whistlers

propagating along a wide variety of locations. He showed that the ratio
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fu/fcE (where fcE is the equatorial gyrofrequency of the path) was

statistically very constant: fu /fcE = 0.51 ± 0.03. This value is

almost exactly the value predicted by Smith's [1961] theory of trapping

(fu /fcE = 0.50). These facts favored the accessibility explanation

rather than the instability explanation because the predicted value of

the accessibility ratio fu/fcE is practically independent of any

parameter whereas the instability ratio depends upon many parameters

and should vary with different propagation paths. This is contrary to

observation.

Evidence of the accessibility explanation was put forth by Angerami

[1970], who observed some unducted frequency components of whistlers on

a satellite. Briefly, referring to Figure 1.2, high frequency components

are trapped up to a certain point A on the field line and become untrapped

after, that is, no longer follow a field line but follow a path such as

(3). A satellite intersecting the ray path (3) can record these components

(see Figure 4.1).

Since the validity of the accessibility cutoff appears to be clearly

established, the distribution proposed by Liemohn [1967] seems somewhat

doubtful. One of our aims has been to find more realistic distributions.

Furthermore, Liemohn's [19671 computations include only propagation

parallel to the magnetic field. Now that a body of very interesting

satellite data, such as Angerami's [1970], has been obtained showing

evidence of nonparallel propagation, these computations should include

nonparallel propagation as well. A qualitative study of wave instability

for nonparallel propagation limited to low frequency (f << f ), has been

done by Kennel [1966], and Kennel and Thorne [1967]. Brinca [1972] extended

this study to waves of frequency - fc/2. Thorne [1968] made a quantitative
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instability study for "MR whistlers" (see Section 4E) which are again

low frequency whistlers. The observations of whistler signals at high

normalized frequencies [Angerami, 1970; Dunckel and Helliwell, 1972],

show the necessity to make a quantitative study of the high frequency

oblique whistler instability. This study has been our second goal.

The contributions of the present work can be briefly stated as

follows:

1. We propose a new model for the energetic particle distribution

function. This model has some important characteristics and

among them, it yields very small amplitude variations over a

large band of wave frequencies, and we believe it represents

the energetic electron distribution more realistically than

previous models.

2. We derive a new general expression for the variation of wave

amplitude caused by wave-particle interactions for an arbitrary

angle of propagation. This expression is algebraically simpler

than previously derived expressions and permits easier numerical

computations. A Fortran program has been developed to compute

gain rates of a whistler integrated along its ray path for a

certain class of hot plasma distributions.

3. We have integrated gain rates along whistler ray paths deduced

from some whistler observations. We have determined some

bounds on the values of the parameters of our proposed distri-

bution. We make some suggestions concerning the explanation of

certain features of the observed particle spectrum.

4. We discuss the application of our analysis to the development

of a diagnostic tool for monitoring the distribution of hot

electrons, and to plasma injection experiments.

In Chapter 2, the theory of whistler-mode wave particle interactions

is presented. First, we describe briefly the physics of the interaction,

followed by the formulation of solving the coupled system of Maxwell

equations and linearized Vlasov equation. Then we derive a general

expression for the rate of variation of wave amplitude for an arbitrary

angle between the wave normal and the earth's magnetic field and for an

arbitrary frequency below the gyrofrequency.
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In Chapter 3, we study in detail the variation of the wave gain for

parallel propagation and for both a distribution separable and nonseparable

in energy and pitch angle. We present a detailed study of the influence

of the angle between wave normal and earth's magnetic field.

In Chapter 4, we compute gain rates along ray paths deduced from

some whistler observations.

Finally, in Chapter 5, conclusions are drawn and recommendations are

made for future work. The details of numerical computations of gain

rates, and various derivations and auxiliary material are presented in

the appendices.
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II. THEORY

.A. INTRODUCT I ON

This work is concerned with the amplitude variations of an electro-

magnetic wave caused by the presence of energetic electrons.

The physics of such a mechanism can already be understood from the

interaction of a single particle with an electromagnetic wave. We describe

the interaction from this point of view in Section B. We define there

such notions as "resonance" and "trapping." It is then possible to

establish a qualitative relation between the interaction of one particle

to the interaction of a distribution of particles.

More rigorously, the interaction between wave and particle is a

solution of a wave-plasma system. As such, it involves the solution of

Maxwell's equations coupled with a kinematics equation. Since the magneto-

spheric medium can generally be treated as collision-free, the evolution

in time of the particle distribution function can be described by the

Vlasov equation.

Section C describes the formulation for solving the coupled system

of equations after linearization of Vlasov's equation.

In Section D, a general expression is derived for wave amplitude

variation, including relativistic effects, arbitrary wave frequency, and

arbitrary direction of propagation.

B. PHYSICS OF THE INTERACTION DESCRIBED FROM A TEST PARTICLE MOTION

I. Interaction of One Particle with an Electromagnetic Wave

The motion of a particle interacting with an electromagnetic wave

has been described in great detail by a number of authors (e.g., Roberts

and Buchsbaum [1964]; Laird and Knox [19651; Bell [1965]; Lutomirski and
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Sudan [1966]; Laird [19681; Dungey [1969]; Roux and Solomon [1970];

Palmadesso and Schmidt [1971]; Dysthe [1971]; Palmadesso [1972]). In

this section we will give a brief description of the interaction.

Because of its motion a particle can experience the electric field

of an electromagnetic wave, which is time-varying in the laboratory frame,

as a constant electric field. In general this condition is realized only

when the momentum or a component of the momentum of the particle takes a

particular set of values. This condition is referred to as the resonance

condition. Because the particle sees a constant electric field at

resonance, it can experience a strong acceleration (deceleration) which

means there is an energy exchange between the particle and the wave as

the particle gains (loses) energy at the expense (benefit) of the wave

energy. This mechanism is responsible for damping (growth) of the wave.

Off resonance, the particle sees a time-varying field and therefore

it alternatively experiences both acceleration and deceleration; the

exchange of energy between the wave and the particle averages to zero as

time elapses. A particle initially at resonance will not stay in this

state for a very long time, its momentum changing its value due to its

acceleration (deceleration). It is shown that, provided the value of the

particle momentum is close enough to one of the resonance values, a stable

situation called trapping can develop: a particle initially in phase with

the wave field will be accelerated, will eventually see a phase reversal

of the field, be decelerated and will again be in phase with the wave field,

the process repeating itself in a stable way.

Not too close to resonance, the particle will not be trapped, that

is it will drift along successive peaks and valleys of the wave.
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In any case, the interaction is most important at resonance and its

vicinity because the further from resonance the less the particle is

perturbed by the wave.

For this reason, we rederive the resonance condition [Bell, 1964]

which is deduced in the linear treatment. We also rederive the expression

for the minimum energy of resonance.

Linear behavior: The electric field of the wave is taken of the

i (k. r- t)
form E = E e . Within the linear approximation, we evaluate

the phase of the field at the unperturbed (E = 0) location of the particle

at the time t [Quemada, 1968]. According to what we have said previously,

the resonance condition will be obtained when the phase of the field becomes

constant. The unperturbed motion of the particle is defined by:

dp p
- q - X B = x p (2.1)

dt eM -c

where the relativistic mass

/ 2

M = M0  + 2 2 (2.2)

MOC

and
o .

(2.3)
c M

The motion of the particle (neglecting radiation) is a helix whose

axis is parallel to B therefore:

p (t) = pzo z = P zt/M

p (t) = p cos t , x(t) = -- sinw t + x
c

p (t) = p sin t = - -- cosm ct + 0 (2.4)

c

SEL 73-043 12



with k = (kx,O,kz), the wave phase becomes:
- x z

kxPi POz
k.r - wt = k.r' + P sinn t + (k -m)t (2.5)

-- 0 c z M
c

where 0 = r(t = 0).
-0

Using the identity:

eixsip J (x)e" (2.6)
m

e -- = e - J I exp(i(k + mm -w)t) (2.7)m Mrz M c
m=-m c

This last expression shows that the particle sees a superposition of

waves propagating in the Oz direction and sees a constant field when

Oz
k + mm - W = O (2.8)z M c

Oz
Now, w' = w - k - is the Doppler shifted frequency of the wave

z M

seen by the particle and the resonance condition is rewritten as:

W' = mo , m=0,±l,±2,... (2.9)c

The resonance m = 0 is excited by both the parallel and the per-

pendicular components of the electric field (referenced to the static

magnetic field) and includes the well known Landau resonance. (For con-

venience we will refer to the m = 0 resonance as the Landau resonance.)

All other resonances m 0 are excited by the perpendicular component

of the electric field and are called the cyclotron resonances. The

infinity of harmonics is due to the spatial variation of the electric

field in planes perpendicular to the static magnetic field.

In the general case, there are two roots of Eq. (2.8) (m / 0;
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m = 0 - only one positive root):

2 
P

m + m +

A 22
AN N p 0

pRml,2 = -- (2.10)
1 - 1/N 11I

II

The minimum energy of resonance WR(P = 0) is given by:

WRm = W + 2 - ; WO = MOc 2  (2.11)
S2 0

PO

PO = M c

e = <) (k,)=0-

A = C/WcO where here cO is the rest mass gyrofrequency

N = refractive index

N = Ncose

In the non-relativistic limit the resonance condition is satisfied

for one value of pR for each m:

A-m P0
p (2.12)

Rm0 A Nil

In Figure 2.1 we have plotted WR versus N with A as a

parameter for the Landau (m = 0) and the fundamental cyclotron (m = 1)

resonances. Note in Figure 2.1 that departure from a straight line

represents departure from the non-relativistic limit and that in the

non-relativistic range WRO is lower (higher) than WR1 when A is

smaller (larger) than 0.5.

Nonlinear behavior: To see what happens after the initial (linear)

SEL 73-043 14
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development of the interaction, we have to integrate the equations of

motion. Though the general case (e 0) is fairly involved and has only

been tackled recently [Palmadesso, 1972], it is basically the super-

position of Landau and cyclotron cases and it suffices to look at these

two cases separately.

In the Landau interaction (E field alone), the equation of motion

is simply:

d2x q
E sin(kx-wt) (2.13)

dt MO

which becomes by change of variable ( = kx-wt:

2 qEk sing (2.14)
dt2 M 0dt 0

This equation is analogous to a pendulum equation. Note that

is merely the deviation from the resonance position x = t
R k

Now the solution of Eq. (2.14) can be of two types depending upon

initial conditions. The particle can oscillate back and forth around

the resonance position or can "rotate" completely. In the first case

the particle is said to be trapped. Trapping is an important phenomenon

because the motion of the particle is significantly altered by the

presence of the field and energy exchanges with the wave can be quite

important.

In the case of trapping, the solution is periodic.

The case of small oscillations gives an order of magnitude of the

period (called trapping time TL ):

T 2TM )/ (2.15)

SEL 73-043 6
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Note that particles close to resonance are most likely to be

trapped (small oscillations case). Note also that Landau trapping means

bunching of particles in space.

The situation will be found to be similar for cyclotron interaction.

Consider a particle in the field of a circularly-polarized electromagnetic

wave propagating along B0:

Let B1 = [B 1 0 coscs(kz-cwt),B 1 0 sincs(kz-wlt),0] be the magnetic field

vector of the wave. = 1, which defines polarization for normal

interaction with either an electron or an ion.)

The equations of motion of the particle are [Dysthe, 19711:

= - sV clsin ,

v = Cs(vl -v )cn sin ,
s p cl

(v -v )

C= - c - ( v cos* (2.16)

where the particle velocity is v = [v cos0,v sinco,vli] and where
eB eB

= <) (v ,B ), v = - , and cl 1 . By definition
-1-1 p k cO M cl M

the angle j can be written as ( = - + Cs(kz-mt) and two differenti-

ations with respect to time produces the expression

= -c + Cs kv . (2.17)

Since cl << c in the magnetosphere, the last equation in (2.16)

shows that (provided v is not too small) constant and therefore

Eq. (2.17) becomes isk V. Thus the first equation in (2.16) can be

rewritten
S 2

= - OTc sin* (2.18)

where

2 (w kv ) 1 / 2

Tc T cl I
c
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We find again a pendulum type equation, this time with respect to

the variable 4, that is, in velocity space. The same conclusions apply

as in the Landau case. There will be trapped particles and the period

-1
of trapping will be of the order of Tc Tc

From the first two equations of (2.16) a constant of motion is

immediately found [Dysthe, 19711:

2
v - 2vllv = constant . (2.19a)

p

2. Relation of Particle Motion to Wave Growth

Now we would like to know what happens when we include an

ensemble of particles. It is possible to get a qualitative answer with-

out going to the full Maxwell Vlasov treatment described in some detail

in the next section.

In the Landau interaction case, particles initially having energy

slightly above the energy of resonance will tend to be trapped and on the

average oscillate at the resonance energy while it is the opposite for

particles initially having energy slightly below resonance. Therefore,

the former particles will tend to lose energy while the latter will tend

to gain energy. If more particles tend to lose energy than to gain

energy, there will be wave growth and vice versa.

In terms of the distribution function:

6f
' > 0- GROWTH
v
R

v - < 0 - DAMPING

R

For the cyclotron interaction case, it is useful to recall

Eq. (2.19a). It is written also as:
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12 1 2
Mv 2 + M(v -v ) = constant = W' (2.19b)

I . 2 11 p

Equation (2.19b) is very easily interpreted. In the wave frame (where

we shall denote quantitites by prime superscript), by Lorentz transforma-

tions [Feynman, 1964]:

E' E
-- II - f

(E + v XB)
E'-

Now from Maxwell's equations:

E = -v X B or, E' = 0
-- -P --

Also since E =0, E' = 0

Therefore Eq. (2.19b) simply means that the particle energy W'

in the wave frame stays constant. Following Gendrin [19681, Eq. (2.19b)

is graphically interpreted in Figure 2.2.

In the (vil,v) plane, particles of constant energy follow a circle

centered at the origin. From Eq. (2.19b) particles interacting with the

wave follow a circle centered on v (taking v as > 0; remember that
p P

vR < 0). From Figure 2.2, it is obvious that particles with parallel

velocity initially slightly above IvRI and resonating with the wave

will gain energy. At the same time their pitch angle increases. The situ-

ation is reversed for particles with Ivlll slightly below vR 1 . In the

cyclotron interaction, the 'slow' particles cause wave growth in contrast

to the Landau interaction, a condition already drawn by Bell [1964]. This

reflects merely the fact that for (normal) cyclotron interaction, wave and

resonating particles are moving in opposite directions. For anomalous
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cyclotron interaction (e-L or p-R interaction) v and v are of
R P

the same sign and 'fast' particles cause wave growth. In this case

particle energy increase is associated with pitch angle decrease, which

was algebraically demonstrated by Brice [19641.

From Figure 2.2, it is also seen that resonant particles with high

energy ( vR >> v ) interact with the wave with practically no change of

energy because the circles of W' = constant are practically coincident

with the circles W = constant. There is 'pure pitch angle' diffusion

[Kennel and Petschek, 1966]. For particles with IVRI comparable or

less than v , the curves of constant W and W' differ significantly.
P

There can be energy diffusion at a rate comparable to pitch angle

diffusion. This is confirmed quantitatively by the quasi-linear theory

[Kennel and Engelmann, 1966].

Now W -W
c W

v = v . (2.20)
R k p k

Therefore high-energy resonant particles interact with low frequency

(w << o ) paves and vice versa.
c

We have seen that in the Landau case, gain rates are related to the

derivative of the distribution function measured at the resonant velocity.

We expect a similar situation in the cyclotron interaction but in con-

trast to the Landau case which was clearly a one-dimensional problem,

several derivatives should be involved. The azimuthal variable plays a

fundamental role in trapping but in the linear case this variable is not

of primary importance (we shall find more rigorously in the next section

that a necessary condition for the time invariance of the unperturbed system

is that f must be C-independent). So two variables remain to be considered,
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v and vI  for example. However, since in experimental measurements of

particle fluxes, the energy W and the pitch angle a of the particle

are most readily measurable, we shall use rather those two variables.

From Figure 2.2 we can qualitatively see how the signs of the deriva-

tives 6- and 6 influence the wave gain. On Figure 2.2, particles

(1) and (2) refer respectively to particles with Iv I slightly faster

and slower than 1vR . Either particle resonating with the wave follows

a curve of constant W t. The trajectories can be decomposed as paths at

constant pitch-angle, A1B1 and A2B2, and paths at constant energy

B1C and B2C.

At constant pitch angle: particle (1) causes damping while particle

(2) tends to cause growth. Now particle (1) has a lower level of energy

than particle (2). Therefore, at constant pitch angle, if f is such

that there are more particles of type (1) than of type (2), there will

be damping, in other words:

S < 0 - DAMPING
v
R

At constant energy: particle (1) causes damping while particle (2)

causes growth. More particles of type (2) than of type (1) will cause

growth:

I > 0o GROWTH
v
R

This gives a qualitative picture of wave gain by wave-particle inter-

action, a result found more rigorously in the next section. The correct

expressions for gain rates involve such derivatives of the particle dis-

tribution function evaluated at the resonant velocities. The gain

expression depends upon the number of resonant particles as anticipated,
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but because it depends also upon derivatives of f not only the ampli-

tude of the distribution function is important but also the fine details

of the distribution function. For this reason there is possibly a great

range of wave gain rates while still considering realistic 
models of

particle distributions in the magnetosphere.

3. Whistler Mode Refractive Index Characteristics and the Standard

Approximation

To know the energies of resonance of particles, we need the

refractive index values. In a cold collisionless plasma immersed in a

static magnetic field B0, electromagnetic waves of frequency below the

electron gyrofrequency can propagate in either of two modes. These modes

are elliptically polarized and the mode whose sense of polarization

corresponds to the sense of gyration of electrons is defined as the

"whistler mode." The other mode corresponds to a polarization in the

opposite sense to the sense of gyration of the electrons. As we will be

concerned essentially with electron interaction and wave of frequency

S>> c~., we will be concerned uniquely with the whistler mode. It can
Cl

be shown that in fact throughout most of the inner magnetosphere the

other mode does not propagate.

The full expression of the refractive index is given in Stix

[1962]. A first approximation is to neglect the ions. It is valid when

S>> LHR' where wLHR is the lower hybrid resonance frequency. For a

high density, two species plasma consisting of electrons of mass Me

and ions of mass M.,

SLHR- e \ . (2.21)

Neglecting ions, N2 can then be written in the form
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2 R2
N =1+ 2 (2.22)

VAcos + C sin + Csin20-A

where
A2

2(A )2_2

Equation (2.22) shows that the whistler mode is a propagating mode

over the angular range from 9 = 0 to the resonance cone angle

R cos1 2+ 1 - 2] (2.23)

High-plasma frequency approximation: Equation (2.22) can be simpli-

2 2 2
fied when >> 1 or D >> c . With this approximation cose R - A

and C can be neglected in Eq. (2.22) as well as the factor 1 in front

of the fraction term:

2 2
N 2 - (2.24)

A(cos9-A)

Quasi-parallel approximation: This approximation holds when Csin 2

can be neglected in Eq. (2.22), i.e., ICIsin2 < A2 . It is related to

the "quasi-longitudinal" approximation of Stix [1962] and Helliwell

[1965] or "quasi-circular" approximation of Allis et al [19631. It

holds for small a or for IC << A2 , that is, 2(2-A2 ) >> 1 or

2
S>> 1. This shows that the quasi-parallel approximation can be con-

sidered as a particular case of the high plasma-frequency approximation.

Non-relativistic approximation and standard approximation: When

2
6>> 1, relativistic corrections can be neglected for Landau resonance

energy and, except in the case of extremely low frequencies, for funda-

mental cyclotron resonance energy. For that reason, the non-relativistic

and the high plasma frequency (and a fortiori the quasi-parallel)
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approximations overlap almost completely. From now on, we will use the

term "standard approximation" to mean explicitly that the three approxi-

mations are satisfied.

Ion correction for very low frequencies: For a comparable to

SLHR the ions cannot be neglected but a simple approximation can be used

[Edgar, 19721 within the standard approximation:

2
N2 _ 9 (2.25)

A(cosB-eA)

where: 2

SLHR
2

For w >> wLHR, we find expression (2.24). Equation (2.25) shows that

propagation is possible for all angles when c < LHR. N(e) is sketched

in polar coordinates on Figure 2.3 to point out the different topologies

of the refractive index surface according to frequency. Precise values

of N = Ncose are plotted versus e for different values of A, in

Figure 2.4.

Knowledge of the polarization of the whistler mode will be important

also.

E 2 E D

z N sin0cosO Ey DSsincos- i -- (2.26)
E 2 2 ' E 2
x N sin 2-P x N -S

where P, DS,  and S are defined later in Eq. (2.58). The square of

these ratios is represented in Figure 2.5, using the standard approximation.
E

z
They increase monotonically from 6 = 0 to R. As R' E-- cotangR'

E x
S- 0, and the wave becomes longitudinal (En/k) and linearly polarized.

Ex IE
For A << 1, -- A at resonance, that is the parallel component of

x
the electric field stays small compared to the perpendicular component.
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C. MAXWELL-VIASOV DESCRIPTION OF THE INTERACTI~N

To deal with an ensemble of particles we introduce the particle

distribution functions f (r,p,t) where subscript s refers to the type

of particle. We chose a momentum variable p in order to include

relativistic effects. Assuming no collisions between particles, Liouville's

theorem implies that each distribution function is conserved as time

elapses:

d
f (r,p,t) = 0 (2.27a)

dt s--

Equation (2.27a) when expressed in terms of partial derivatives yields

the Vlasov equation:

6f p 6f 6pxB if
s s

S- qs E + - = 0 (2.27b)
s - s

In the last equation, the force term is written explicitly (Lorentz

force law; we assume only electromagnetic forces are important).

The solution of the self-consistent system of Maxwell and Vlasov

equations is the solution of the wave-plasma system. The precise form

of the Maxwell set depends upon whether the plasma is regarded as a

collection of particles in free space, or as a dielectric with an

equivalent permittivity.

The Maxwell equations written below show the relationship between

one description and the other one:
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Description as particles in free space: Dielectric description:

VXE = - B VXE = - B

VXH = - D + J + J VXH = D + J
S- - -ext -ext

VB = 0 V-B = 0

V'D = p + Pext V.D = Pext

D = 80E 3 D = e0 *E

B = H (2.28a) B = H (2.28b)
OZZ 0:_

In the preceding sets of equations, p and J represent external
ext -ext

particle and current densities. We need also the charge relations:

I* 3p = Z qs fs d p (2.29)
s

3
J = qs - d- p (2.30)s M s

s s

In the context of the linear theory we assume that the wave is a

small perturbation which causes a perturbation of the particle distribution

function which is small with respect to the equilibrium distribution

function which exists in the absence of the wave:

E = 0 + E (r,t)

B = B + B (r,t)
-O -

f = fOs(p) + fls (r ,p,t) (2.31)

Strictly speaking, this expression is valid only for plane waves. If
the medium is homogeneous and stationary, the most general linear
relationship between D and E is a convolution whose Fourier-Laplace
transform yields this expression (cf. Quemada [1968]).
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Assuming the medium as infinite, we can Fourier transform fields and

distribution functions in space. Laplace transform is used to transform

the time variable. Use of the Laplace transform introduces the physical

principle of casuality (the perturbation is considered as beginning at a

given time). This condition, initiated by Landau [1946], enables one to

give a sense to some integrals otherwise indefinite. After transformation

the kinetic equation reads:

f s[ k,pwl = s[k,p,wl*El [k,] + i.t. (2.32)

(i.t. stands here and hereafter for initial terms involving the spatial

Fourier transform of quantities at t = 0).

Square brackets are used to distinguish spectral functions from

functions in the space-time domain. A transform pair is defined by:

f[k,p,l =f e- - dr dt e Citf(r,p,t) (2.33a)

(rpt 1 3 ik'r w d-it

f(r,p,t) 4 d 3ke ik'~.f d- e--[tf[k,p,w] (2.33b)

(25T) - W

(similar transform pairs are defined for the electromagnetic field).

The quantity C = ±1 is introduced to take care of the two most common

conventions in the literature. The contour W is a straight line parallel

to the axis Rew and lying above (for C = +1) or below (for C = -1)

the poles of the integrand in order to conserve casuality in the system.

s is an operator whose expression is determined by solving the
-s

coupled Maxwell and Vlasov equations after linearization.

The current relation is

p 3
J = f  - p= a[k,]1E [k,wC] + i.t. (2.34)
-1 s M 1s 1

S -co S

31 SEL 73-043



where the components of the conductivity tensor are given by

Sab= q d3p (2.35)ab s M
s C s

where C is a mapping of the contour W. It has been introduced by

Landau [1946] in order to facilitate the integration of Eq. (2.35) (see

Stix [1962] for example).

In both descriptions (particles in free space and dielectric

description) the first Maxwell equation reads:

kxE = UB + i.t. (2.36)
1 -1

while the second equation, written differently in each description,

defines the equivalent dielectric tensors X:

-kXBl 2 E + ip0 Jl + i.t. = .E 1 + i.t. (2.37)
c c

From this equation we deduce the equivalent dielectric tensor

u [k,]
jdk,c] = I - - (2.38)_i 0

The elimination of vector B in both Eqs. (2.36) and (2.37) yields

the wave equation:

A[k,wl'E [k,CD] = S[k,c] (2.39)

where S takes into account all the initial terms, and

Aab = NNb - N26ab + Xab (2.40)

where the refractive index

N= -k . (2.41)

The electric field solution is obtained from Eq. (2.39):
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E Ek,l = A k,m]Slk,o =
1 _ Dk,W]

where

D[k,wl = Det(A) . (2.42)

By inverse Fourier-Laplace transform of Eq. (2.42), we arrive at the

solution for E in the space-time coordinate system. By the residue
-1

theorem (assuming the components of S to be entire), the only contribution

to the integral of the inverse transform comes from the poles of the

integrand, that is, the zeros of the denominator.

The equation which gives the zeros of the denominator in Eq. (2.42),

i.e., D[k,w] = 0 (2.43)

is called the dispersion equation. Its solutions define the wave modes

of the wave-plasma system. Equation (2.43) can be satisfied for complex

values of k or w (in fact to be consistent with previous convention

o has to be considered in general as complex). For instance a complex

value of w for real k means either wave growth or damping according

to signs of w. = Imw. If Cnu. > O, the perturbation will grow without
1 1

limit with time and the distribution is unstable. However, the fact that

the perturbation can grow with time is not enough to determine the

spatial characteristics of the growth. The perturbations are not single

monochromatic plane waves but a superposition of them given by the

Fourier-Laplace integrals (2.33a,b). A single frequency may grow exponen-

tially with time but the amplitude of the wave packet as a whole may

remain finite at a fixed point in space. This leads to the distinction

of two kinds of instabilities, "convective" and "absolute" (or nonconvec-

tive) instabilities. In convective growth, the wave packet is amplified

as it moves along (that is, at each point in space it first grows and then
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decays), whereas in the second case it grows without limit in each point

of space as t - -. For further discussion, see for instance Akhiezer

et al [1967]. This distinction has been discussed by Sturrock [1958].

Rather involved criteria have been developed to distinguish between the

two kinds of instability [Briggs, 1964; Derfler, 1967, 19701. For the

first kind of instability, the medium acts like an amplifier, whereas for

the second case, it works like an oscillator.

The work of Lee [1969], and Lee and Crawford [1970], though

restricted to strictly parallel propagation, showed that in the magneto-

sphere absolute instabilities appear to occur only under extreme condi-

tions. Therefore, we shall assume hereafter that we deal only with

convective instabilities. For convective instabilities it is immaterial

whether we consider a real and k complex or vice versa. Provided

kil <<  and i << w, it can be shown that k and .i are

related by the relationship

. = - k. v (2.44)
1 -i -g

where v is the group velocity of the wave packet. The physical content
-g

of Eq. (2.44) is that w. describes the wave packet amplitude variation
1

in the wave group velocity frame. Convenience will dictate the choice

of the complex variable. For present purposes it will be more convenient

to discuss gain rates per unit distance whereas in ray tracings

parameterized in the time variable, it will be more convenient to work

with gain rates per unit time.

We derive in the next section the expression giving the growth rates

of small amplitude waves propagating in a magnetoplasma composed of a

cold plasma permeated by a tenuous energetic particle population.

SEL 73-043 34



D. GROWTH RATE EXPRESSIONS

In order to derive the dispersion relation for our system it is

first necessary to determine the tensor (. The derivation of the

expression of ) is somewhat lengthy but does not present any particular

difficulty. It has been given in a number of textbooks [Montgomery and

Tidman, 1964; Bekefi, 1966] and we do not repeat it here. In general {

can be expressed in the form (where we have explicitly derived the

relativistic form):

dp, r(pi,p )
{ = I y- y 2c dp , 1 (2.45)s f 71 p -p R- - s m=- -0 IIRm

where:

1 1 1

PII -PRm Pil -PRml PII -PRm2

V(p ,p ) =
M m 2 2 2

2 m2 2 1 2 2
2 2 P0 + (1 2 )(P PI
AN 1  NII

In Eq. (2.45) the expressions for pRml,2 are as given by Eq. (2.10),

provided in the expression of Nii = kc/w, w is considered now as

complex. In the non-relativistic limit V(pRml' p) - 1, V(pRm2'p ) O,

and pRml PR0 with pRmO given by Eq. (2.12) (where again o must

be considered as complex).

In Eq. (2.45)

r= J *U-s -s

and
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mJ2 mJ J' mJ

mJ J'mm 2 2 m

-p C~si p - pp 2

= m- i 2 (') 2 p - CiJmJ' Pp (2.46)
-s Cs a m s mmII1S

mJ
m 2 2

I 1 s m P, l Jm II
s

where . = ±1 and J and J' are the Bessel functions of order m
i,e m m

and their derivatives of argument:

kp
a = (2.47)
s M W0

s cs

The quantity U has the definition:
ss

U = 0 U 0 O
0 0 Us

1 s

iOs s Os

Us = (Ms II , P" - ~ pP -

Us = M - M pcs p . (2.48)
is s ppH P± -- l P,, "

where g0s is the equilibrium distribution function of particles of

species s normalized to unity:

fgs d3 p = 1 (2.49)

When go can be represented as a relatively high density cold plasma

background permeated by a relatively low density energetic particle

distribution (as is the case in the inner magnetosphere), then we can

write
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go = g 0 c + gO0H
(2.50)

JgOH d 3 p < < gc d 3 p

and use the approximation:

u(p, ) u(POU )

p dpil- d p - p P -PRm dp + Cir.u(PRm)
11 Rm -co II Rm

(2.51)

C Im pRm > 0

and its analytical continuation in the other half-plane in the Landau sense.

P means that the principal part of the integral, in the Cauchy sense, has

to be taken" and u stands for an arbitrary function of p 1. Inserting

the expression of pRm given by Eq. (2.8) into Eq. (2.48) we find:

U - U (2.52)

Rm Rm

and in this case the Onsager relations hold (} = X , = X ; the
xz xz yz zy

relation {xy = Hy z was already fulfilled).

Condition (2.50) enables one to develop Eq. (2.43) in the form

[Kennel, 1966]:

D[k,wm] D [k,m] + D [k,m] = 0 (2.53a)

where D O is the cold plasma dispersion relation (given later by Eq.

(2.57)) and D 11 << ID0!. Since the energetic population is dilute,

the real part of the refractive index is determined by D [k ,ow] = 0

(see Appendix C). Assuming real w and complex k, Eq. (2.53a) is

rewritten as

D[k + ik.,c]l D [k ,) ] + ik.* 0
-r - 0 -r -1 7k

+ Re {Dl[k rw]+ i Im {Dl[k r ]}= 0 (2.53b)
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which shows that:

Do
i = - Im D (2.54)

where Im D1 [k ,r ] is rewritten as Im Dlr for short.

Now,

0 0
v = - - - (2.55)

D
that is k- is colinear with v and Eq. (2.54) enables one to evaluate

-g

k. (component of k. along v ), which is the physically meaningful
ig - -g

quantity since wave amplitude gain has to be evaluated along the ray path.

6D
It can be shown that - > 0, so that, according to Eq. (2.55)

6D0

-ki *k Im D, IIr
ig aD 2 2 D 2 1/2

where:

DO = AS
N  - BSN2 + CS  (2.57)

where AS, BS  and C S  are the parameters introduced by Stix [1962]:

A = sin2 + P cos28 ,S

2 2
BS = RL sin 2 + PS (1 + cos 2) ,

C S = PRL ,

1 1
S = (R + L) , D - (R - L) ,

2 S 2

R =- Ys y L 1 y c s

s s W + s cs s s s

P = 1 - E Ys ; (2.58)

s
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so that:
Im D

kg = Ir cos . (2.59)
ig 2AsN 2  B Nc g

If time gain is more appropriate, it is immediately given by Eq. (2.44),

i.e.,

t. = - kig I (2.60)

where

v = e n(N)e (2.61)
-g ~~-k -

and ek and e are the unit vectors along and across k respectively.

With condition (2.50) we have:

} _ h + ia with <ab ab (2.62)
habl aab

where Xh and X a are respectively the Hermitian and antiHermitian part

of the dielectric tensor:

2 h  , 2 ia = (2.63)

where t denotes the Hermitian conjugate (complex conjugate of the

transpose). With Eq. (2.63):

Im D = a (S-N 2 )(P-N sin 9)
Ilr xx

+ a [(S-N2cos 2)(P-N2 sin )-N cos 2Osin ]
yy

+ a [2D(P-N2 sin 2e)]-a [2(S-N 2)N cosesine]
zz S xz

- 2D S [Y  (P-N 2 sin 2 8) + a (N 2cos9sine)] (2.64)

and with approximation (2.51):

a =_ 2 J ( MMp )U (p .,p )V(p p )dp
Sk 0 (PRmi' P)U- s (PRmi' )V(PRmi' P

- s II m=- i=l

(2.65)
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so that:

21 2ys O CO 2

Im D = - E Us (p mi,p)V(p Rm,p)
s II m=- O i=l

mJ mJ J'

P 2 [(S-N2)(P-N2sin2e) -fm + 2D (P-N sin m
s s

+ p [(S-N 2cos2 )(P-N sin) - N cos2 1 (J',)2m 2
- 2pm pN 2 cosesine (S-N ) + C sDsJmJ

Rmi 1 a sSmm

+ p [(S-N 2 cos 2 )(S-N 2 ) - D J dp (2.66)
Rmi m I I

Apart from the relativistic correction and the simplification (2.52)

this expression has been derived by Kennel [1966). Equation (2.66) has

been further simplified by Brinca [1972 by making use of the cold plasma

dispersion relation rewritten as:

[(S-N 2cos 2e)(S-N )-D (P-N sin 9) = (S-N 2)N 4sin 2cos e . (2.67)

Using Eq. (2.52) brings still further simplification compared to

Brinca's expression (enabling one to use once more Eq. (2.67)) and Eq.

(2.66) can be cast into the compact and relatively simple form:

ImD = 2 
2

Im Dlr E= E V(PRmi' P1 ms (PRmi'P )U(PRmi I)p dpm=- 0 i=l

where:
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2 N -P

s Ik H N -S

= (C J + C J ) 2 , m 0 ,
Oms ml m-1+ m2 m+1 M

2 1
0s 4[MscN J0+ sDsHp J1 2

P,

C =H(N2-L) + - 1 , Cm2 =H(N
2 -R) + - 1 ,

ml = I m m2 ±

R .= R,L, L = L,R 4 (2.68)

e,i e,i

The expression of k. is easily obtained by inserting Eq. (2.68)
ig

into Eq. (2.56) or Eq. (2.59):

2 m
2 cosag 2 2

k. g PS __ps EV(pfippem(pp (p )P 2
ki -5 cos 22 m V(Rmi P)ms (PRmi' P)Us (PRmi' I)P dP±l

so N2FH m=- 0 i=1

F = (RL-PS)2sin 49 + 4P2D2cos2 1 (2.69)

It can be shown that V(PRmi' 1), i=1,2, are positive-definite

quantities, therefore the integral in Eq. (2.69) is positive-definite.

Furthermore the quantity H is positive. Therefore Eq. (2.68) facilitates

a straightforward discussion of stability. The distribution function gO'

being a solution of the Vlasov equation, can be expressed according to

Liouville's theorem in terms of invariants of the particle motion. 
In

the magnetosphere the simplest choice of invariants is p (we assume no

sin
dc electric field) and the first adiabatic invariant sb (where

b IO/EI is the dc magnetic field normalized to equatorial value).

4Notice the inversion between R and L according to the sign of the

particle charge. We have defined as m = +1 the resonance at arallel

propagation for either sign. In that case only C 1 0 as N -R = 0
2 1 s

either for normal electron interaction (N = R) or or normal ion interaction

(N2= L).
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Therefore it will be more convenient to express Us given by Eq.

(2.48) in terms of derivatives with respect to p and sina:

S 3Os 1 Os 2 m
U= M sinx a + (sinc (-sin a + (2.70)
s s  I p T(sin)s

If we now assume that the energetic component of the plasma consists only

of electrons whose distribution function decreases monotonically with

energy ( c 0 (see Section 3B) and increases monotonically with pitch

angle ( i 
> 0 , we reach the following conclusion concerning

(sin)>)

stability:

1. Landau interaction: m = 0, always damping (U < 0 always)

2. Anomalous gyroresonance interaction: m < 0, always damping

(U < 0 always)

3. Normal gyroresonance interaction: m > 0, U can be > 0 or

< 0 and there will be accordingly growth or damping; because of

the positive term m/A in Eq. (2.70), small values of A
will favor growth [Kennel, 1966; Liemohn, 19671. Isotropic
distribution (dgo)/(sina) = 0 cause only damping.

For parallel propagation (ki = 0), as = 0 and all Bessel functions

are null except J 0, that is, only the term m = 1 is to be considered.

Kennel [19661 found that the gain is maximum for parallel propagation for

low frequency waves though a thorough investigation not restricted to

only very small frequencies may yield an opposite conclusion [Brinca, 1972].

Within the standard approximation, Eq. (2.69) can be written in a

simpler form (neglecting ions):
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2 cosa a) e
3, gfPm 2

ig 2 cose 2 2 2 mUp dp
N m=- 0 COcos

CO = C11( = 0) = 21P I

1 A sin e
C C 1 (t + t), t= cose, t2  cos- , m 0
ml,2 0 2 1 2 1 2 (cose-A) m

2
0 = PO Jo- cose J 1  (2.71)

C O  I

Expression (2.71) is valid in the context of the standard approxi-

mation and for arbitrary frequency (provided the wave is not in the

vicinity of both the LHR and the resonance cone). It is practically as

simple as the low frequency approximation (A << 1) of Kennel [1966].

There are two differences between Eq. (2.71) and Kennel's expression:

1. For the cyclotron harmonics (m 0), the coefficients Cm1l 2

are now the sum of two terms: t1 , given already by Kennel and

a new term t2 which increases with e.

2. For the Landau interaction (m = 0), ®0 is now the sum of a term

involving J1, given by Kennel, and a new term involving JO0

Let us test the validity of Kennel's [19661 approximations. At the

Gendrin angle eG, for low frequencies:

2
- A(1-4A ) A (2.72)t - - , (2.72)

2 m m

and still can be considered as small compared to the first term

tl = 1 ± 2A - 1 . (2.73)

But this is no longer true when e - R , where on the contrary t2

is the dominant term and tl can be neglected. Therefore Kennel's
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approximation for the cyclotron harmonics is valid for a < eG  but not

for e > eG

Neglecting the first term in 80 is more drastic because by

expansion of J1, both terms in 90 are of the same order (in small

A or small 9). This point requires further investigation with respect

to Kennel's [1966] conclusions (see Section 3E).

It is possible to give a physical interpretation of each term in

G 0 . The first term corresponds to the "classical" Landau interaction.

It is a result of the action of the parallel component of the electric

field upon the motion of the particle. The second term corresponds to

"transit time" Landau interaction. It is a result of the presence of a

non-zero parallel component of the magnetic field for non-parallel

propagation [Stix, 1962). This component acts on the particle according

to the equation dv 6B
z z

M dt - i

2
where 4 = Mv /2B0 is the magnetic moment of the particle. Note that

both effects tend to disappear when A - 0.

When OR

C -.C =C =N

2

S 2N -- J , for all m . (2.74)

In the next chapter, we will obtain quantitative values of k. byig

choosing realistic models of distribution functions in the magnetosphere.
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III. VARIATIONS OF GAIN RATES WITH MAGNETOSPHERIC PARAMETERS

A. INTRODUCTION

The variations of whistler wave amplitudes caused by wave-particle

interaction depend upon both the cold plasma and hot plasma distributions.

Although models of the cold plasma are fairly extensively known, mainly

from nose whistler measurements (cf. references of Chapter 1), energetic

particle distributions are much less known. Both for lack of information

and for computational convenience only simple models of hot plasma will be

considered here. Limits on these models will be set by whistler observations.

The purpose of the chapter is to study in detail the variation of

wave amplitude gain with respect to various magnetospheric parameters.

In Section B we review models of the cold plasma as deduced from

nose whistler measurements, and a few energetic particle measurements.

The assumption of parallel propagation has played a considerable role in

whistler analysis, in part because the first whistler observations were

made on the ground where only ducted whistlers could be recorded, and in

part because of substantial simplifications in the analysis. In Section C,

we study in detail the variation of wave gain for parallel propagation,

assuming that the class of distributions is similar to that chosen by

Liemohn [1967]:

f(W,() c W-V sin q (3.1)

This model has several advantages. It is mathematically simple. The

energy variation is reasonable, compared to particle data. As of now,

no experimental data have confirmed the pitch angle variation, but a

general pitch angle distribution can be decomposed as a superposition of

such functions.
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The model (3.1) is most likely oversimplified. It assumes separ-

ability in energy and pitch-angle. This simplification is relaxed in

Section D where we study a more general class of distributions that are

nonseparable in energy and pitch-angle. This new class of distributions

can have radically different characteristics from the previous class.

In Section E, we make a detailed study of the variation of the

gain with respect to arbitrary angles of propagation and frequency, and

in Section F, we review the important contributions of the chapter.

B. PARTICLE DISTRIBUTIONS IN THE MAGNETOSPHERE

1. Cold Plasma Distribution

Inside the plasmapause, the cold plasma distribution has been

very successfully described by the diffusive equilibrium model of

Angerami [1966) (see also Park [1973]).

Apart from the vicinity of the top of the ionosphere and beyond

L > 6, the full model with three types of ions and a gravity term does

not differ significantly from the following idealized model:

n = nE exp (R _ R (3.2)

Subscripts E and 1 refer respectively to equator and base level

(1000 km altitude),

n = density

r = geocentric distance

R1 = geocentric distance at 1000 km altitude

RE  = dipole magnetic field equatorial geocentric distance

HH = hydrogen scale height = KT/MHg1

K = Boltzmann's constant
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T = temperature

g = acceleration of gravity.

To complete the description of the model, we need the equatorial

density profile. C. G. Park [private communication] has established an

average equatorial profile based on whistler measurements in the month

of June, 1965. It is given in Figure 3.1 (solid line). An equatorial

-2 -4
density decrease as L for L < 4 and as L for L > 4 seems to

fit closely the actual variation. Contours of constant P =P / are
p c
L-3

plotted in Figure 3.2, assuming an average variation nE( ) c-3 and

-3
nE(4) = 250 cm , to which corresponds 8E(4) - 10. Using values of

B given by the figure, one can deduce from Figures 2.1 and 2.4 the

minimum energy of resonance for cyclotron and Landau interactions at

each point of the plasmasphere. This is a very useful quantity to know,

since the number of particles available at a given resonance provides an

-1
estimate of the importance of the resonance. Since WRm n , it is

Rm

a simple matter to deduce WRm from a density profile different from

Figure 3.2. It can be seen from Figure 3.2 that the standard approxi-

mation is valid practically everywhere inside the plasmasphere. A few

values of WR1(A = 0.5, e = 0) are given in the figure.

Outside the plasmapause, a completely satisfactory model is not

yet available though the collisionless model of Angerami [19661 seems

-4
reasonable. This model is close to an r model. With such a model

the contours of constant p are plotted on Figure 3.3. assuming

nE (L) L , and nE (4) = 10 cm 3  to which corresponds BE(4) - 2.

2. Hot Plasma Distribution

Most of the early particle observations in the magnetosphere

were obtained with instruments (such as Geiger tubes or scintillation
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FIGURE 3.1. EQUATORIAL ELECTRON DENSITY PROFILE DEDUCED FROM NOSE
WHISTLER DATA ASSUMING A DIFFUSIVE EQUILIBRIUM MODEL

(SOLID LINE, C. G. PARK, PRIVATE COMMUNICATION) AND A

COLLISIONLESS MODEL (ERROR BARS FROM ANGERAMI [1966]). The dashed

curves show comparison with L -2  and L -4 models for the D.E. model

and with an L - 4 model for the collisionless model.
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counters) capable of observing electrons only above an energy of - 40 keV

(see review in Hess [1968] and also Russell and Thorne [1969] and

Vasyliunas [19691). Now the bulk of whistler-electron resonance inter-

action occurs within the energy range 100 eV - 40 keV, at least inside

the plasmapause and knowledge of particles in that energy range is

essential. However, information on the particle distribution in this

energy range is still meager.

As of now, to the author's knowledge, the only published data of

differential fluxes of 100 eV - 40 keV particles are from Schield and

Frank [1970]. We have reprinted on Figure 3.4 two of the figures from

this paper which show fluxes observed during times following a long

period of low magnetic activity. The features of the distribution

functions seem fairly repeatable.

Let us focus our attention on the plasmasphere spectrum. Above

1
1 keV, the distribution function falls off smoothly like - 5 (see

v

Figure 3.4). There is a flattening of the distribution in the 500 eV -

5
1 keV range. In the lower energy range (W < 500 eV), the spectrum

5Confusion may arise in the term "spectrum." Let us be clear about our

definitions. The number of particles in a given velocity range is, by

convention: dn = f(v)d3
dn = f(v)d v

where dn is the number density and f(v) is the "particle distri-

bution function." For comparison with data, it is convenient to define

the "particle distribution function in energy" F:

dn = F(W,O)dWdj

where ( is the solid angle. Experimentally, the current density is

measured in terms of the quantity:

dJ = evf(v)d3 v

from which the differential flux d is obtained:

dJ
d - edWd vF(W,D)

edWd1 SEL 73-043
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FIGURE 3.4. DIFFERENTIAL ELECTRON FLUXES IN DIFFERENT
REGIONS OF THE MAGNETOSPHERE, FROM SCHIELD
AND FRANK t1970].
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1

becomes softer with f(v) cc -- . For further details, the reader is

V

referred to Schield and Frank 11970].

C. PARALLEL PROPAGATION FOR A DISTRIBUTION SEPARABLE IN ENERGY AND

PITCH ANGLE

1. Introduction

Parallel propagation has played a considerable role in whistler

stability analysis (e.g., Scarf [1962]; Tidman and Jaggi [19621; Liemohn

and Scarf [1962a,b, 1964]; Guthart [1964, 1965]; Liemohn [1967, 1969],

to limit ourselves to work explicitly related to whistler gain in the

magnetosphere). One reason for that choice is that the first observa-

tions were made before the satellite era and in that case only ducted

signals could be observed. Moreover the abundance of ground data proves

that it is a very important case. Therefore the parallel propagation

approximation is a valid approximation for all ground whistler data,

at least as long as cold plasma propagation is concerned. A second

reason is that the gain expression (2.69) which is rather complex

simplifies considerably for parallel propagation. It reduces to:

2 m
k = - 2ps dp 2  V U (p ) (3.3)

I igs 2N2 ,2 1,2 s Rm,p
swN 0 1,2 

In the standard approximation and neglecting ions Eq. (3.3) is

rewritten following Kennel and Petschek [19663:

and the change of units is the following:

df[(cm2 XsecxsreV) - 1 ] = 1.76x105(vF) [C.G.S.]

Note that: f c vF

f cc vF ,
d@ cc v2f

1
When we discuss a spectrum c -- , there may arise some confusion about

whether we mean f, F or d~. Unless otherwise specified, we will

always implicitly define v as the energy parameter of the "spectrum"
associated with the distribution function f(v).
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2 2

k = M - ( - 1) AK I gpdp
I ig 22 0  A PSN 0 PR

s in p dp
A = i d (3.4)
KP M

2 f g 0Pdp

0 R

Equation (3.4) shows that

A (A) > - GROWTH ,
KP 1-A

AA (A) < - = DAMPING,
KP 1-A

st
A (A ) MARGINAL STABILITY ( k. = 0)
KP st 1-A st  ig

or Ast = AKP (Ast)/[I + AKp(Ast)] (3.5)

Therefore AKp must be at least positive for amplification. AKP KP

is related to the sign of through Eq. (3.4) which shows that

isotropic distributions 0 0(siI) ) always yield damping (AKP = 0).

The same conclusion is reached a fortiori for distributions with

< 0 everywhere (A < 0). Only distributions with > 0
a(sin) KP d(sina)

somewhere may cause amplification. For such distributions and because

A
1-A is an increasing function of A, generally low (high) frequencies

will be unstable (stable).

With a simple choice of distribution gH p -sin a, expression

(3.4) can be expressed in a simple analytic form. We are then able to

discuss relatively easily the variations of the whistler gain rate with

various magnetospheric parameters. This discussion is presented in

Section 2.
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2. The Variation of the Gain with Various Magnetospheric Parameters

For a Distribution c p- sin 9

We represent the distribution function by (see Eq. (2.50))

go = gc + g0H'

A q
1 H(pq V- 3  sin a

1 6(p) -3
g [ - ) 6() + 3 6 0p3 ] (3.6)Oc 4- q/ 2 2 H

b P

where b = magnetic field normalized to equatorial field value, pl

corresponds to some convenient normalization energy W 1  (we will use

later 100 eV unless otherwise specified); 6E1 = nE(W > W )/nE(W > 0).

H(p) is the Heaviside (step) function introduced to limit the total

number of particles. The quantity pH is chosen >> (MOKT)1/ 2  to insure

both that 6EH << 1 (where 6EH = nE(W > WH)/nE(W > 0)), and that the

temperature correction need not be included in the cold plasma refractive

index [Montgomery and Tidman, 1964]. The condition 6EH << 1 is necessary

to validate the treatment of Chapter 2 used to find the complex root of

the dispersion function. In these conditions it does not matter what is

the precise functional form of g0c, which we represent conveniently

-3
by a Dirac distribution 6(p) plus a term 60PH3  to represent particles

from thermal energies ( .1 eV) to p 10 eV. This assumes a constant

distribution in this last energy range, an assumption which may be far

from the true physical representation. However since our results are

insensitive to the exact form of g0 c in this energy range we feel this

representation is as adequate as any.

A general function of pitch angle can be expanded in Fourier

series in terms of sin(n) and cos(nc), where n is an integer. It
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is reasonable to assume symmetry with respect to the plane a = rT/2

(particle mirroring back and forth along the field line from each side

of the equator). Thus the distribution function is expandable in terms

of sin(2na-a) and cos(2n) which can be developed in turn in powers

of sing. Therefore we will consider q as an integer, while v is

arbitrary. (In the following for mathematical convenience, we will

derive expressions explicitly when q is even.) The normalizing condition

requires:2 r/2

A p 3  dp sinq+l da = 1
vq 1 v\q Pl p 0

or:
q/2

A = 2 (v-3) H (a+1/2)/(q/2)! , q even. (3.7)
a=O

The coefficient A increases with both the energy parameter v
vq

and the pitch-angle parameter q. For a given energy spectrum, the co-

efficient A must compensate for the increasing loss of particles at
vq

low pitch angle for increasing anisotropy. A similar conclusion is

reached for the case in which the anisotropy is given and the spectrum

softness parameter v is increased.

From Eq. (3.4), it is immediately seen that

A = q (3.8)
KP 2

AKP is in this case independent of A and there is correspondingly

one single frequency of marginal stability:

A A q (3.9)
st 1 + AKp 2+q

the low frequencies A < Ast are unstable and the high frequencies
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A > Ast are stable.

Inserting Eq. (3.8) into Eq. (3.4) yields:

SigC 6Elb-q 1 pi - 3

4 ,q A 2 112 PRj

q/2

C = (V-3 ) n [(a + 1/2)/(a-1 + V/2)], q even,
a=0

A-1 (3.10)
- p

iPR - NA 0

In Eq. (3.10)

C = A B , (3.11)
vq vq vq

O q/2
B = -2 sinPR pdp (q/2)/ [a- + /2] , q even.

0 p ( a=0 [

The coefficient B decreases with parameters ) and q. This
vq

expresses the fact that

B c g f oP± dpj (3.12)

0q 0R

is a measure of the number of particles available at resonance.

Clearly, for increasing anisotropy the average energy of a particle

at resonance increases for a given minimum energy of resonance, that is

the number of available resonant particles decreases. The same conclusion

holds for increasing spectrum softness. Now, as opposite conclusions were

reached regarding the coefficients A , there is a cancellation effect
vq

between A and B and the coefficient C stays fairly constant
vq Vq vq

for different values of the parameters V and q.
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The expression of (ki/k) is somewhat complex with all parameters

intricately mixed. There are two geometrical (space) parameters, L and

X, one wave parameter A, and three hot plasma parameters 6El' V and

q. The first three parameters influence the cold plasma propagation

characteristics. Therefore the gain rate is an intricate combination of

wave frequency and both cold and hot plasma parameters.

As our main interest lies in comparing gains with data, it will be

more useful to express gains in terms of decibels along a certain distance

S (1000 km for instance). Let us call this quantity G :u u

Ab 1 igG = -5 8.686 k. S -160 -N (3.13)
II u II ig u L I k

From Eqs. (3.13) and (3.10) we can study the variations of G with all
II u

the magnetospheric parameters.

First of all, G is directly proportional to the density of hot
Ii u

particles as expressed by the parameter 6E1. This is a characteristic of

linear theory in contrast to nonlinear theory [Sudan and Ott, 1971;

Helliwell and Crystal, 19731. It is very important to emphasize the

normalization of the density of hot electrons we have adopted and we will

use throughout. We have chosen to keep 6El constant (ratio of number

of hot electrons above 100 eV to number of cold electrons) for a given L

shell value. This is in contrast with previous normalizations (e.g.,

Liemohn [1967]; Kennel and Thorne [1967]; Thorne [1968]) where the

choice was to fix a normalization energy of the order of 10 keV or more.

The reason for normalizing at such high energies is that at that time

only fluxes above a few keV were known. With the more recent measure-

ments of Schield and Frank [1970], fluxes down to 100 eV are known. There

is an essential difference between these two types of normalizations which
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is as follows: the bulk of resonant cyclotron energy is between 100 eV

and 10 keV and therefore for the previous choice of normalization, a

softer spectrum means usually more particles at resonance in contrast to

our normalization. This difference is clearly shown in Figure 3.5.

For a given value of A, the equatorial gain is

G (L) 6(L)L N (L) 6 (L) 3 -9 n /2-1(L) . (3.14)
IIE El l E El E

-3
With a variation nE = L-3

G uE(L) CEl(L) L3V/2 - 6 (3.15)

For a hard spectrum (v = 4),1IGuE varies like El(L) and for softer

spectra, IGuE increases with L more rapidly than 6E1(L). There is no

detailed information as how 6El(L) varies but the data of Schield and

Frank [1970] suggest that the number of hot particles stays fairly constant

across different L shells and it is reasonable to assume that either

6E1(L) increases or at least stays constant with L. For a ducted ray

path over a complete field line we have to multiply iG uE(L) by a factor

roughly proportional to L. All these factors add up to indicate that

the gain rates are increasing with L. This hypothesis appears to be

supported by observation. For instance Dunckel and Helliwell [1969]

observed that inside the plasmasphere emissions are more frequent close

to the plasmapause. Conclusions would be roughly the same for a variation

-2 -4
nE o L , L , and therefore outside the plasmapause as well as everywhere

inside.

Now we look at the variation of the gain with latitude X, keeping

A constant:
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S-2-2
Su ( bl-q/2 ii b3-q/2- n ) (3.16)

GuE \1NE ( E

G (X) depends now on q. Away from the equator the gain rate wil
II u

decrease because of the factor b-q/ 2 in Eq. (3.16) for an anisotropic

distribution. This fact is simply a consequence of the first adiabatic

invariant law. The parameter v affects the gain variation quite

differently inside and outside the plasmapause. Inside the plasmapause,

n(X)/n E _ constant and the gain decreases with increasing X because the

resonant energy is increasing away from the equator. Therefore the number

of resonant particles decreases away from the equator. This effect,

combined with the particle decrease due to the first adiabatic invariant

law, yields a fast decrease in 111 G u  with X as illustrated in Figure

3.6. Therefore the major contribution to gain is concentrated in a

relatively narrow latitude range around the equator.

Outside the plasmapause n(X)/nE z b and from Eq. (3.16), G uX)

is about v-independent. The decrease of the gain is therefore much

slower outside the plasmapause but notice we have not yet taken into

account the decreasing of A away from the equator and that Ii Gul

decreases with A for reasonably soft spectra () > 5; see Figure 3.7).

Because of this supplementary factor, the gain is still relatively

concentrated around the equator.

In order to have a complete picture of the gain variation, it

remains to study its variation with v and q as illustrated in Figure

3.7. The values of the gain are high for a hard spectrum v = 4 but

decrease for softer spectra. Notice it is not too high for V = 5 and

reasonable anisotropy (q = 2). As pointed out before the softer the spectrum,
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VERSUS LATITUDE ASSUMING DIFFUSIVE

EQUILIBRIUM MODEL.
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the less particles in the mid-frequencies (A - 0.5) because of the

normalization of the distribution function we have adopted (same number

of particles above 100 eV). This effect clearly overtakes the effects

of increasing slope. The qualitative behavior of the gain remains the

same for a given value of q (same number of marginal stability frequency)

1 q
and different values of V because of the factor l - ( - ) ] in

A 2

Eq. (3.10).

D. PARALLEL PROPAGATION FOR A DISTRIBUTION NONSEPARABLE IN ENERGY AND

PITCH ANGLE

Up to now, we have assumed a very simple type of distribution. We

wish now to discuss the stability with respect to more general types of

distributions. One of the characteristics of the previous type of distri-

bution is that it exhibits a single marginal stability frequency Ast.

Moreover for higher frequencies, the gain is a very rapidly decreasing

function of frequency. This has led several authors (Liemohn [1967];

Thorne [19681) to hypothesize that whistler cutoffs in observed data are

caused by hot plasma damping effects. Almost invariably, careful investi-

gation has shown that cold plasma accessibility effects are a very

plausible alternative explanation [Carpenter, 1968; Edgar, 1972]. Even

in the amplification regime (A < Ast ) , the values of the gain predicted

by various workers look very high compared with observations. It is

therefore interesting to investigate whether another type of distribution

might exhibit not a single frequency marginal stability but a broadband

marginal stability.

We know fairly well (see Figure 3.4) the energy law of variation

(c p-V ), however the pitch-angle law is unknown down to low energies (i.e.,

100 eV). Pitch-angle laws different from those considered in the last
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section are needed to yield broadband stability. A general distribution

still separable and c p can be expanded in a series of the variable

sina. Therefore let us consider a distribution:

gH p A sin I . (3.17)

q=O

For such a distribution:

A = qB 2 Z B (3.18)

q=O q=O

This shows that AKp is independent of pR' that is of A. Such a

distribution would have exactly the same characteristics as that of Eq.

(3.1) with respect to stability and we can state:

Lemma: a separable distribution in energy and pitch-angle with an

energy dependence c W -V and an arbitrary pitch-angle dependence

exhibits a single stability frequency.

Identical conclusions are reached with a function

gOH ~( V sin a , q ' 0 (3.19)

Therefore, a fairly general class of distribution functions

separable in W and L yields only one stability frequency. In order

to look for a function which may yield marginal stability over a broad

frequency band (such a function may be thought to have in the limit an

infinite number of values Ast for which Gu = 0), we now consider a

nonseparable distribution in particle energy and pitch-angle.

This is a natural choice. We have seen that an isotropic distribution

yields damping for every frequency. The more the function is anisotropic

(the higher the value of parameter q) the higher is the frequency Ast ,
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Now high values of A correspond to low values of resonance energy, and

vice-versa. It is therefore expected that a broadband marginal stability

function is one which has a large anisotropy for low particle energy and

low anisotropy for high particle energy. Therefore, such a function must

have a pitch-angle anisotropy which is energy dependent. This can be

seen equally well in a very simple manner from the interaction of a single

particle with an electromagnetic wave propagating parallel to the static

magnetic field. This interaction is described by the constant of the

motion of the particle during the interaction (Eq. (2.19 a or b)) and its

graphical interpretation (Figure 2.2). For high resonance energy the

interaction results predominantly in pitch-angle scattering (with virtually

no energy exchange) whereas for low resonance energy both pitch-angle

scattering and energy exchange occur. Therefore if waves and plasma

constantly interact in the magnetosphere, as we have every reason to

believe, the shape of the particle distribution may eventually be con-

trolled by the process. This change of the particle distribution by the

interaction with electromagnetic waves is described (within certain limits

of validity) by the quasi-linear theory which shows practically pure

pitch-angle diffusion for high particle energies, but for low particle

energy, there is energy diffusion as well (e.g., Kennel and Engelmann

[19661). A criterion for making the difference between pitch-angle

diffusion only and both pitch angle and energy diffusion can be found in

Gendrin [1968], for example. Pure pitch angle diffusion can be considered

when:

v << v (3.20)
p R

In view of the preceding discussion, the hypothesis of separability

in energy and pitch-angle may only be considered as valid for low
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frequencies of interaction (as given by the criterion Eq. (3.20) and may

be an oversimplification for higher frequencies.

The simplest choice of a nonseparable function related to the previous

calculations is to choose a superposition of functions c p sin a with

different V and q:
sinq

g A (sin . (3.21)
OH q q p

For mathematical convenience, we choose:

1 3 exp[q(pl/p) qsin a/b]
H H(p-pH) 6E1A - 3  . (3.22)
OHH El l 1 V

p

(By expanding the exponential in series, it is immediately seen that this

function belongs to the class represented in Eq. (3.21).

The parameters N, q and v are chosen to match published particle

data. The parameters v and q have the same physical meaning as given

previously, i.e., v expresses the energy variation of the distribution

function whereas q is an anisotropy factor. The new parameter Vq

expresses the coupling between energy and pitch-angle of the particle.

The normalizing condition is written with change of variable y =
p

1 T/2

Al = dy exp[qy sin a] y sinada (3.23)

and by expansion of the exponential in series:

n n  ,
-1 1 q 2 n.

A + * (3.24)
1 v-3 +  - 3 + nV (2n+l)

From Eq. (3.24) we obtain:

v+nv -3
-nq/2 n 1 pl1 v+nv qS A 6 b -n q  B [1-(1 -l)n] (3.25)

k 4 1 El n. )V+nVq,2n A P
Sn=Oq II7R
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Inserting Eq. (3.24) into Eq. (3.25) we get the gain rates for the

distribution Eq. (3.22).

Figure 3.8 represents G for B = 10 (corresponding roughly to
II u

L = 4 at the equator) versus normalized frequency. The values of v

and q are kept constant (4 and 5 respectively) but different values of

Vq are chosen to see the important effect of this newly introduced

parameter.

For the case Vq = 0, which is the particular case of separability,

the gain is very similar both qualitatively and quantitatively to that

produced by the functions = p sin a. However it can be seen that the

gain decreases as v increases. For a value V = 0.5, the maximum

value of G (A) is already less than 1 db. Now a value V = 4 represents
II u

an upper limit in value of II G and the gain is expected to be lower

for higher values of v. In Figure 3.9 the function Eq. (3.22) has been

represented for a value Vq = 0.5 in terms of differential fluxes versus

energy and versus pitch angle with an appropriate normalization to closely

fit Schield and Frank's data [1970]. The experimental values of a were

close to 900 (the field of view of the electron analyzer was directed

earthward while the spacecraft was moving almost parallel to and near the

magnetic equatorial plane). The fit is better than a pure power law

(c p-V). In particular, the spectrum is softer for lower energies as

indicated by the data. This may be a manifestation of increasing energy

diffusion at low energies. Bogott and Mozer [1971] measured pitch-angle

distributions on ATS-5 satellite at synchronous altitude during quiet time.

The data show quite isotropic distributions in the measured energy range

(40 keV and above). Our proposed model of distribution also fits this

observation.
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FIGURE 3.8. PARALLEL GAIN FOR A NONSEPARABLE DISTRIBUTION.
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as in Figure 3.7.
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There may be some irrelevance in comparing Bogott and Mozer's [1971]

measurements which were made outside the plasmapause with measurements made

inside the plasmapause. In favor of the comparison, from Schield and

Frank [1970], high energy fluxes are fairly similar inside and outside

the plasmapause. Secondly, the Kennel and Petschek [1966] mechanism

predicts a small anisotropy for 40 keV electrons (AKp - 1/6, or q - 0.3).

This mechanism has recently been extended by Lyons et al [1972] to include

arbitrary angle of propagation and provides a satisfactory explanation to

both the "slot" between inner and outer Van Allen radiation belts and the

shape of pitch angle distributions of high energy particles [D. Williams,

private communication).

E. NONPARALLEL PROPAGATION

The purpose of this section is to compute the variation of the gain

with the wave normal angle. The general expression of the gain is much

more complex than for the parallel propagation case. For simplicity we

study first such simple separable distributions as p-Vsin a. Then we

study nonseparable distributions for small wave normal angle. In the

latter case it is then possible to make an expansion around = 0 of

the expression (2.69), limiting the mathematical complexity.

i. Separable Distribution

A Fortran program has been developed to compute the nonparallel

gain rates for separable distributions with integer values of v and

even integer values of q. The details are given in Appendix A.

The gain rates have been computed for many combinations of the

parameters v and q and A varying from 0.1 to 0.9 and e from 00

to a fraction of a degree from the resonance cone angle 8R. The values
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G (e)
of the ratio G (0) are displayed on Figures 3.10 and 3.11 for a few

u
values of v and q. The gain decreases with values of e because of

increasing Landau damping. There is a distinction to be made here

whether the gain was negative (damping) or positive (growth) for parallel

propagation at a given value of A. As the absolute value of the gain

often decreases for increasing wave-normal angle, it may well be that

there is less attenuation, but there is never more amplification at

e 0 than at e = 0 for A < 0.5. This casts a doubt upon Brinca's

[1972] argument that the presence of minimal gain at e = 0 plays an

important role in triggering emissions, at least with this kind of distri-

bution. In fact the cases discussed by Brinca [1972] are cases for

which there is only damping at 9 = 0. For A > 0.5, maximum growth at

e 0 is possible but this effect is very small ((Gu(9)/Gu(0) always

stays - 1). The frequency A = 0.5 is a transition frequency for several

factors whose sense of variation with 9 is different for values of A

above or below 0.5: N 1(0) and Cml(e)/C 0 decrease with 6 when

A < 0.5. At the same time there are more Landau particles than fundamental

cyclotron particles for A < 0.5. Therefore, the first cyclotron resonance

part of the gain can only decrease (in absolute value) for e f 0 (and

e < eG) and A < 0.5.

We have included in the program harmonics up to order Iml< 3. The

conclusion is close to Brinca's [1972] conclusions: harmonics of order

m ' 0,1 (Landau and fundamental cyclotron interaction) are almost always

negligible. For A - 1, pRO ' PR2 and if the spectrum is hard enough so

that the number of particles at Landau and second harmonics are not too

different, the strength of the normal second harmonics interaction and the

Landau interaction can be comparable. For A - 0, PR-m * PRm, and the
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FIGURE 3.10. NONPARALLEL GAIN NORMALIZED TO PARALLEL GAIN
VERSUS 9 FOR A SEPARABLE DISTRIBUTION AND TWO
DIFFERENT VALUES OF ENERGY PARAMETER. The vertical

arrows indicate the value of the Gendrin angle corresponding to

the value of the parameter A.
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FIGURE 3.11. A PLOT SIMILAR TO FIGURE 3.10 BUT FOR TWO
DIFFERENT VALUES OF PITCH-ANGLE PARAMETER.
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harmonic m = -1 can be non-negligible compared to the harmonic m = 1.

It is seen from Figure 3.10 and Figure 3.11 that there is a range of

values e < s (G (s ) = 0) for which the distribution was unstable. s

is decreasing with increasing value of v, as was already shown by Kennel

[1966]. Therefore Kennel's conclusions concerning an unstable case of

angle < es are valid, though his approximation for Landau interaction is

incorrect (see Section 2D). For A < 0.5, there are more Landau than

cyclotron particles and the number of particles being weighted by the

steepness of the energy spectrum, the ratio of available Landau particles

to available cyclotron particles is increasing with v. This ratio is

increasing when A decreases. It is expected that es is correspondingly

decreasing. However, the relative number of particles available at

resonance is weighted by the factor 8 . As pointed out in Section 2D,

80 decreases when A decreases. This has an opposite effect to the

increasing number of Landau particles when A decreases. For the "classical"

part of the Landau interaction, this just expresses the fact that the

parallel component of the electric field decreases relatively to the

perpendicular component when A decreases (see Figure 2.5). For a given

value of v, s is increasing with q. The increasing of anisotropy

affects differently cyclotron and Landau interaction. In Eq. (2.70), the

go 2 1
derivative is weighted by a bigger factor (-sin a + - ) for

o(sina) A

fundamental cyclotron interaction than for Landau interaction (-sin2 ).

Close to the resonance cone, there is a rapid change of topology in

the refractive index around the Gendrin angle eG (see Figure 2.4) which

is reflected in the gain of Figures 3.10 and 3.11 where vertical arrows

show the location of the Gendrin angle. The gain in absolute value even-

tually becomes much bigger than for parallel propagation as R - R
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because p -Rm 0 and there is an increasing number of particles at

resonance. With the values of V and q chosen on Figures 3.10 and

3.11, there is only damping as 9 R R

For A << 1, PR(-m) Rm, and if g 0  is anisotropic,

1 m O0
U 0 MW (3.26)

m p A (sina)

Furthermore from Eq. (2.74), 8-m m when R - eR . Therefore the

cyclotron harmonics tend to cancel each other.

In the general case, using Eq. (2.74) for 6 -R and the functions

B (d) defined in Appendix A, we find that as 6 - 0R:
vq R

Ckig c E p (q+V)B 2) O B p (3.27)
m Rm )V+2,q A v+2,q-2

where the functions Bm m  are evaluated at d = (A-m)tanReI and the
Vq m R

coefficient of proportionality is positive. For high values of A, we

make a rough analysis treating dO = AtaneR  and d 1 = (1-A)tan8R  as

small quantities and assuming that we can neglect harmonics of order 0,1.

Growth will occur at the resonance cone if

2 2
Sq d v

-(q+v) B - B q + B -(q+v)B - ( ) > 0 (3.38)I HV+2,q 2 v,q+2 A vq ,q+2 4 1-A

(and damping in the opposite case).

The coefficients B are given in Eq. (3.11) which shows that:
vq

q+2 B -2
B - Bq; B = B , (3.29)

,q+2 q+% Vq \+2,q q q+V

and Eq. (3.29) is rewritten as:

2 2

(q+2) - -(V- 2 ) + - (q+2) -1 A ) > 0
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4 1-A V 22 + -- ( ) [V-2-d ]
or 2 A 0

q > 2 (3.30)

1 do 4 1-A- _ 1 + ( )
A 2 2 A

1

For parallel propagation, the corresponding inequality was

q > 2/(- -1) (see Eq. (3.9)). For example for v = 5 and A = 0.6,
A

Eq. (3.30) requires q > - 6 for growth at the resonance cone whereas

only q > 3 was necessary for growth at parallel propagation.

This rough analysis indicates that distributions need to be signifi-

cantly more anisotropic to yield growth for propagation close to the

resonance cone than for parallel propagation.

2. Nonseparable Distribution

By expanding Eq. (2.71) around 6 = 0, the variations of the

gain for small angle can be found:

2

2 g PI 2 A i P RO 1 P.i
ig 2 3 2 1- 2 i II U

cos 9 N 0o1 0

2 (2 1)] 92N 2A 2 2
1-A 21 1 2 II p I  1

+ R1 2 1 1 aU

2 2(1-A)

+ LU2 p dp± (3.31)

where U = U( pRmP), and the quantity - is to be evaluated at

P1 = iPR1

Inserting Eq. (3.22) into Eq. (3.31), we find the variation of

the gain for a nonseparable distribution and small angle. (Numerical
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computations are made with a program developed in Appendix A.) This time

the 6 range of instability is fairly small. The type of nonseparable

distribution we have chosen gives only damping for the m = 0 resonance

whereas it gives an almost marginally stable cyclotron gain over a wide

range of frequencies. The cyclotron gain does not change much with 9

small (its stays practically marginally stable for small 8) and therefore

the Landau interaction overtakes the cyclotron interaction very rapidly

when 9 increases. This effect is more pronounced when the coefficient

of coupling )q increases as shown on Figure 3.12 where a value of

Vq = 0.25 still gives growth at = 100 whereas for q = 0.50 there

is already damping at 8 = 100

F. CONCLUSION

A new model of distribution function has been proposed. The new

characteristic of the distribution is that it is nonseparable in particle

energy and pitch angle, or in other terms, particles with different

energies have different pitch-angle distributions. It has a very important

effect on wave amplitude gains caused by wave-particle interaction, namely,

this distribution produces a gain which is almost stable for a wide range

of frequencies in contrast to previous separable distributions such as

Liemohn's [19671 which yield large positivegains (amplification) for low

frequencies and large negative gains (attenuation) for high frequencies.

This offers an explanation for the accessibility/instability controversy

about the high-frequency cutoff of nose whistlers presented in Chapter 1.

As of now, electron energy spectrums have been measured over the range

(100 eV - 40 keV) in which the bulk of interactions takes place between

whistlers and electrons in the magnetosphere (see Schield and Frank's

[1970] data). On the other hand, pitch angle information is not yet
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available in this energy range. Therefore immediate confirmation of our

model is not possible. We feel it is reasonable though, because, 1) it

predicts an increase in the slope of the energy spectrum in the low particle

energy range, in agreement with Schield and Frank's 11970 data; 2) it

predicts almost isotropic fluxes in the high particle energy range, in

agreement with Bogott and Mozer's [1971] measurements and Kennel and

Petschek's [1966] predictions.

A detailed study of the influence of the angle e between wave vector

and static magnetic field upon the gain rates has been presented. For

separable distributions, the study has been made for the complete range

0 < e < eR . We have emphasized the importance of the weighting factor

of the Landau interaction which weights the number of Landau particles.

This factor and the number of resonant Landau particles vary in opposite

phase with frequency. We have shown that significantly more anisotropic

distributions are required for growth at the resonance cone than for

parallel propgation. For nonseparable distributions, the gain is evaluated

for small values of 9. It is found that the cyclotron part of the gain

stays small and is rapidly overtaken by Landau damping when e increases.

Our new model of distribution may be over simplified in the sense that it

was derived by looking for a wave-plasma equilibrium over a large frequency

band but only considering cyclotron interaction. A suggestion for a dis-

tribution model giving equilibrium also in the presence of the Landau

interaction will be given in the next chapter.

This chapter was concerned with the evaluation of gain over a narrow

region in space considered as homogeneous. To compare with actual data

the gain must be integrated over a ray path. It is the object of the

next chapter.
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IV. INTEGRATED GAIN RATES AND COMPARISON WITH DATA

A. INTRODUCTION

The variation of the wave amplitude gain per 1000 km has been

studied in the previous chapter. The influence of the numerous parameters

of concern have been investigated in detail. To compare with actual data,

it remains to integrate the gain over a complete whistler wave ray path.

To carry out the numerical computations we use the ray tracing program

developed by Walter [19691 and refined by Angerami [1970]. Certain

parameter values of the ray tracing program are used as input numbers to

our computer program. This procedure is explained in more detail in

Appendix A.

In Section B we use our program, including arbitrary angle of propa-

gation 8 for separable distributions and small values of e for non-

separable distributions, to test the validity of the parallel propagation

approximation (which assumes e = 0) for ducted whistlers.

The observations of Angerami [1970] were very important in determining

the nature of nose-whistler upper cutoffs. Taking the same values of ray

tracing parameters as Angerami, we are able to test the validity of our

model of distribution against models of separable distributions. This

investigation is carried out in Section C.

Recently, Dunckel and Helliwell [19731 observed signals with very

high normalized frequency (above A = 0.9) and explained by ray tracing

the accessibility characteristics of these signals. We investigate the

instability characteristics of these signals in Section D.

The magnetospherically reflected (MR) whistlers were first observed

and explained in terms of accessibility by Smith and Angerami [1968].
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Edgar [1972] made an extensive study of this type of whistler. Using

the results of some ray tracings of Edgar [1972], we study the instability

characteristics of MR whistlers in Section E and compare our calculations

to similar computations made by Thorne [19683.

In Section F, we summarize the most important contributions of the

chapter, and discuss their implications. In particular we note the

relevance of our results to plasma injection experiments, and to plasma

diagnostic techniques.

B. DUCTED WHISTLERS

The gain has been integrated along a realistic model of a whistler

duct for a few distributions. The duct is described mathematically by

the following expression [Angerami, 1970]:

-(L-LO)
n(L) = nO * 1 + C exp 2 (4.1)

2.AL

where no  is the background density, C is the relative enhancement

(depletion) of density at the center of the duct (L ) and AL represents

the duct semi-thickness.

We have chosen the following values:

C = 0.2

L0 =4

AL = 0.02

-3
n O(=0) = 340 cm-3

-3o+

n (1000 km) = 3130 cm-3 (T = 1000 oK, 80% 0+ and 20% H+

at 1000 km altitude).

The results are presented in Table 4.1 for a few separable distri-

butions and a nonseparable one, where we give both exact and approximate
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TABLE 4.1. GAIN FOR A DUCTED WHISTLER. GT and GP are

respectively the total and parallel approximation

gains (in decibels), integrated between conjugate

points at 1000 km altitude along ray paths in a

duct centered at L = 4 (see text for the other

duct parameters). The rays were started at vertical

incidence at 1000 km altitude and at center of the

duct, with the exception of the 6.65 kHz ray. AE
is the normalized frequency at the equator. Three

separable distributions are chosen and one non-

separable distribution whose parameter values are

determined in Section 4C.

S= 5 5 5 5

f(kHz) AE q = 0 2 4 4.8

Vq = 0.4

1.36 0.1 GT = -2.08 +10.3 +13.5 +0.56

GP = -2.08 +10.4 +13.6 +0.62

2.72 0.2 GT = -8.94 +17.1 +24.4 +1.32

GP = -8.82 +17.2 +24.6 +1.48

4.08 0.3 GT = -24.2 +22.2 +36.6 +2.52

GP = -24.0 +22.4 +36.8 +2.76

5.44 0.4 GT = -54.6 +22.8 +47.4 +3.92

GP = -54.4 +23.0 +47.8 +4.38

6.65 0.483 GT = -115.4 +14.5 +57.0 +2.48

GP = -114.8 +16.4 +60.0 +6.62

gain values. Our results confirm the validity of the parallel approxi-

mation used by Liemohn [19671 in the case of ducted whistlers. In almost

all cases the difference between the full treatment and the parallel

approximation is negligible. There are two reasons for that. One reason

is that the angle 9 stays small when a wave propagates in a duct. The

second is that we deal with low frequencies (A < 0.5) and though there are

more Landau particles than cyclotron particles, the parallel component
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of the E field stays very small. The only big discrepancy is for the

nonseparable distribution and the frequency f = 6.65 kHz, to which

corresponds a normalized frequency A = 0.483. This frequency is very

close to the limit frequency of duct trapping. The choice of input

parameters is very critical in order to trap this wave and many attempts

had to be made to find the correct values necessary for trapping, in

contrast to lower frequencies for which a choice of vertical incidence

at 1000 km at the middle of the duct was sufficient for trapping. It

turned out that the variations of 8 for f = 6.65 kHz were significantly

higher than for lower frequencies.

As expected from the results of Chapter 3, the gain is considerably

lower for the nonseparable distributions (only a few db) than for the

separable distributions. Therefore, unless pitch angle information is

available, it is impossible to conclude that nose-whistler upper cutoffs

are caused by hot plasma effects. Therefore the use of nose whistlers as

a diagnostic tool for monitoring electrons may be limited. Our nonseparable

distribution is constructed to imply a certain equilibrium between waves

and plasma (neglecting sources and sinks) and in quiet times, nose

whistlers may tell us only that indeed this situation is reached. In

quiet times, it may be possible to correlate a noted change in electron

distribution with a noted change in nose whistler amplitude characteristics,

especially if there is a tendency towards isotropy. The observation on

satellites of much higher cutoffs is very important because: 1) it is

evidence of the accessibility explanation of nose whistler upper cutoff

observed on the ground; 2) it sets up some limits on the values of the

parameters of the hot plasma distribution. An investigation of this high

cutoff case is given in the next section.

SEL 73-043 84



C. DUCT LEAKAGES

The observations of Angerami [1970] provide an almost unique source

of information for correlating the whistler amplitude spectrum with the

distribution of energetic electrons within the plasmapause since his data

and Schield and Frank's [1970] data are from exactly the same period. In

particular the spectra of Figure 3.4 were measured on June 23, 1966.

During the period between June 15 and June 23, the magnetic activity was

quiet; K index - 1,2; the DST index was low and the plasmapause was

located beyond L - 5.5. It may be therefore reasonable to assume there

was no major change in the distribution function during that period.

Briefly, the data recorded on OGO 3 on June 15, 1966, between L = 4.1

and 4.7, showed whistler frequencies far above the cutoff frequencies

observed on ground data. Sometimes these high frequencies were still

ducted when they reached the satellite (see Figure 4.1a). More often,

they were already unducted (Figure 4.1b). Careful ray tracing explained

the propagation of these waves (see Figures 4.2 and 4.3). For further

details, the reader is referred to Angerami [1970]. The suggestions of

Liemohn [1967] that the high frequency whistler cutoff on ground data at

a normalized frequency of - 0.5 is caused by hot plasma effects is there-

fore questionable, particularly because without ducting we expect increased

damping with the class of distribution functions previously considered.

To look at that question in detail, we chose the ray tracing

parameters that Angerami used to explain the duct leakages. We integrated

the gain rates on these ray paths and present the results in Table 4.2

(see Table 4.2 caption for all details). None of the distributions are

compatible with the data: either there will be too much damping or there

will be too much amplitude difference between two different frequency
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FIGURE 4.1. TIME FREQUENCY SPECTROGRAMS OF WHISTLERS RECEIVED ON OGO 3. Detailed
explanation of the records is found in Angerami [1970. (a) shows a
whistler propagating in a duct up to 3/4 of the local gyrofrequency
(see Figure 4.2). (b) high-frequency leakages from whistler ducts
(see Angerami [19701 and Figure 4.3).



L=4 .710 (71)

I', B

OGO3

3 _ 5

FIGURE 4.2. RAY TRACING TO EXPLAIN WHISTLER UPPER CUTOFF
FREQUENCY OF FIGURE 4.1a. The values of the
ray tracing parameters at different points

along the path are the following:

A: L = 4.7407 X = 19.48 e = 6.00 A = 0.500 W =404 W =404
RO Rl

B: 4.7467 15.42 5.21 0.601 281 124

S: 4.7406 9.32 -7.45 0.731 158 21.5

C: 4.7102 7.43 -15.60 0.748 132 15.8

D: 4.4696 2.20 -41.33 0.884 78.5 16.7

L and A are the geomagnetic dipole coordinates. The angle G
(in degrees) is measured clockwise from the local magnetic field.

A is the wave frequency normalized to the local magnetic field.

W and W (in eV) are the minimum energies of resonance of
RO 1

Landau and fundamental cyclotron resonances respectively.
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L=4.604 (*2)

A

L= 4.127 (#5)
f =8.7kHz B

c; \

3 L 4; 5

FIGURE 4.3. RAY TRACING TO EXPLAIN UPPER CUTOFF FREQUENCY

OF LEAKAGE FROM DUCT 2, AS OBSERVED ON FIGURE

4.1b (L2 component).

A: L = 4.6110 X = 24.66 8 = 3.50 A = 0.4 92 WR0 = 712 WR1 = 759

B: 4.6011 16.36 -8.54 0.751 246 26.9

C: 4.3428 10.98 -33.83 0.766 104 9.7

S: 4.0747 6.45 -43.19 0.703 57.8 10.3
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TABLE 4.2. GAIN FOR SEPARABLE DISTRIBUTIONS. The gain is

expressed in decibels. Cases I and II refer

respectively to Figures 4.1a,b. The frequencies

shown are the following: Case I: f = 6.1 kHz

is the highest observed frequency, and f = 4.17

kHz is the frequency which value normalized to the

local magnetic field is 0.5 at the satellite location;

Case II: f = 8.7 kHz and f = 7.7 kHz are respectively

the highest and lowest observed frequency. The values

of the parameters used in ray tracing of 6.1, 8.7 and

7.7 kHz components are taken from Angerami [1970].

The variables v and q are the energy and pitch angle

parameters. The functions GT and GL are respectively

the total and the Landau gains expressed in db, inte-

grated between A and S (see Figures 4.2 and 4.3).

For the unducted paths the values of the parallel

approximation gain GP is also given. The normalization

of the distribution function for the computations is
-3

6 = 4x10 -3 , to which corresponds n(W > 100 eV) Icm
El

W is chosen lower than the lowest resonance energy

a ong the paths.

Case f(kHz) v= 4 4 4 4 6 6 6

q= 0 2 4 6 0 2 4

6.1 GT= -394 -117 -3.23 +50.3 -1429 -341 -45.5

GL= -3.2 -1.5 -2.34 -1.0 -4.2 -1.25 -0.7

4.17 GT= -117 +15.4 +65.2 +86.6 -58.6 2.7 +21.1

GL= -0.75 -0.37 -0.5 -0.6 -1.2 -1.8 -1.2

8.7 GT= -1830 -754 -296 -67.4 -18000 -5170 -1450

GL= -525 -296 -188 -127 -2110 -851 -432

GP= -2210 -891 -287 +40.6 -11000 -3070 -814

II
7.7 GT= -871 -300 -70.8 +32.8 -3190 -800 -141

GL= -316 -172 -106 -63.6 -821 -323 -160

GP= -1100 -348 -817 +171 -2260 -497 -19.5

components. (On the average, a difference of 20 db between two frequencies

would be readily observable on the records.)

Therefore we rule out separable distributions such as Liemohn's [1967]
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as a possibility. It should be pointed out that for the unducted paths,

computations with the precise values of 8 had to be done, in contrast to

ducted propagation for which the parallel propagation approximation is

valid. We have written a program which includes 7 harmonics (see Appendix

A), however a reasonable approximation could be made by keeping only the

m = 0 (Landau) and m = 1 (fundamental cyclotron) harmonics and neglecting

all other cyclotron harmonics.

We have repeated the duct leakage calculations using a nonseparable

distribution of the class developed in the last chapter, and present the

results in Table 4.3. From the ducted path of Figure 4.2, we have

determined, for two fixed values of ) and V , what value of the

anisotropy parameter q which would yield small gain between points A

and S and small differences in gains between any two frequencies. (As

an example, we have chosen 6.1 kHz and 4.1 kHz which correspond respectively

to the highest frequency observed in Figure 4.1a and the frequency to which

corresponds A = 0.5 at the satellite.) A value of q between 4.8 and

5.0 seems adequate. Note though the high sensitivity on the value of q.

(There is a big difference in gain values with as little a change as q

varying from 4.5 to 5.) The reason for the choice of parameter values is

the following: V is chosen to match the measured energy spectrum and we

have seen (Chapter 3) that V - 5 is a reasonable value. The parameter

q is chosen so that the highest observed frequency is not damped. From

Section 4B, the parallel propagation approximation can be considered as

approximately correct. From Figure 3.8, we see that the highest unstable

frequency is less than the marginal stability frequency Ast of the distri-

bution having the same values of V and q but a value of vq = 0. In

the case of V = 4 and vq = 0, Ast can be obtained analytically:
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TABLE 4.3. GAIN FOR NONSEPARABLE DISTRIBUTIONS. A table

similar to 4.2 but for nonseparable distributions.

V is the coefficient of coupling between energy

a9d pitch angle. GC is the fundamental cyclotron

part of the gain. 6E1= 4X10 - 3 , and WH = 20 eV.

Case f(kHz) v= 5 5 5

q= 4.5 4.8 5

Vq= 0.4 0.4 0.4

6.1 GT= -18.9 -1.87 +8.0

GL= -1.97 -1.80 -1.7

4.17 GT= +4.1 +4.5 +4.8

GL= -0.34 -0.31 -0.29

8.7 GC= +12.3 +116 +181

II
7.7 GC= +71.9 +96.6 +123

Ast = 1 - 1-eq/b (4.2)
st q/b

For high values of q/b:

Ast 1 - b/q (4.3)

We therefore expect a value

b

q > (4.4)
u1-u

where A = 0.73 corresponds to the highest frequency observed on

Figure 4.1a, and bS  is the ratio BS/BE at the satellite position.

Close to the equator:

b 1 + 9 X 2(rd) . (4.5)

At the satellite, XS - 90 and bS - 1.11, and we deduce from Eq. (4.4)

91 SEL 73-043



that q > 4.1.

The quantity v is chosen so that there is small difference in

gain between different frequencies. From Figure 3.8, such a difference

diminishes when vq increases, and we can set up a lower bound on vq,

which depends only weakly upon q.

As it can be seen by looking at the values of k. from point to
ig

point along the ducted ray path, the instability characteristic of a

nonseparable distribution is more complex than for a separable function.

For a fixed wave frequency, a nonseparable distribution function can be

unstable at equator and be stable off equator, along the same field line,

in contrast to a separable distribution. Physically, this comes about

due to the fact that the resonant energy is increasing going from equator

poleward and for a nonseparable distribution, the anisotropy of the

function at resonance is decreasing towards isotropy and correspondingly

the distribution becomes less unstable.

For the unducted path of Figure 4.3, only the fundamental cyclotron

part of the gain could be determined because we developed a program only

for small values of parameter dm = (A-m)tane (see Appendix A). Note

the high sensitivity of parameter q on the cyclotron contribution. As

pointed out earlier, the instability behavior of a nonseparable distri-

bution may be complex. Also, for the distributions we chose, there is

both damping and growth along the path. Finally, because of unducting,

the relative range of resonant energy is large and gain rates change

markedly towards the resonance cone.

The Landau contribution for the unducted path can be estimated to

be of the same order for the class of separable and nonseparable distri-

butions we have chosen. Both derivative terms with respect to energy
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and pitch angle add up to contribute Landau damping (see Eq. (2.70)), in

contrast to cyclotron interaction where they compete with each other.

The essential difference between separable and nonseparable distributions

was precisely that these derivative terms almost cancel each other for a

large frequency band in the case of nonseparable distributions and do

not in the other case. Therefore we expect from Tables 4.2 and 4.3 that

the Landau interaction will dominate for our model. The nonseparable

model we proposed is certainly not adequate for the unducted path for

several reasons:

1. We looked at wave-plasma equilibrium only with respect to

cyclotron interaction. In the unducted case, a distribution at equilibrium

with both Landau and cyclotron interactions should be looked for (this

becomes especially important close to the resonance cone where the Landau

interaction eventually dominates), for separable and nonseparable distri-

butions.

2. There is complete lack of information about particle distributions

in the energy range below 100 eV and the whistler of Figure 4.1b inter-

acts with electrons well below this energy. If used below 100 eV our

model eventually violates the condition 6EH << 1, which is necessary for

the validity of the gain expressions.

We may suggest a type of distribution which is at equilibrium with

respect to Landau interaction. Looking back at Figure 2.4, we see that

N,, is fairly constant over a wide range of frequencies and angles e

(but a few degrees from 8R ) and so is the minimum energy of resonance

of Landau interaction from Eq. (2.12).

A peak in the distribution function or at least a flattening in the

vicinity of the average Landau energy of resonance would reduce Landau

damping. To a minimum Landau resonance energy WR0 = 150 eV, there

corresponds an average energy of interaction

< W > = WRO[1 + < tan2 >] (4.6)
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For v = 5, vq = 0.4 and q = 5, < W > = 750 eV. We see indeed such

a flattening around 750 eV on experimental spectra (see Figures 3.4a,b).

The flattening of the spectrum being repeatable in two events separable

by 20 days, it seems more than fortuitous and may well be related to

Landau interaction.

Several important results have been established in this section:

1. Separable distributions such as Liemohn's [1967] cannot account

for Angerami's [1970]1 observations.

2. The class of nonseparable distributions we proposed in Chapter

3 is compatible with the high frequency cutoff at A u 0.75 of Figure
4.1a. In turn the value of this cutoff determines a lower bound for one

parameter (q). A lower bound on the coupling parameter v is determined

by the condition that the difference in gain should be small for different

frequencies.

3. Our model is probably not adequate for very low energy electrons
(a few tens of eV) because if it is accurate the unducted whistler

components of Figure 4.1b should have been absorbed. This suggests that
the observed flattening of the distribution in the 500 eV range reduces
Landau damping.

The nonseparable distribution we propose incorporates the idea of

equilibrium between plasma and waves in the magnetosphere. This equilib-

rium was investigated by Kennel and Petscheck [1966] and Lyons et al

[19721 for high energy particles. We suggest here that waves may control

efficiently the distribution of low energy electrons as well. Of course

the picture of the mechanism should be completed by taking into account

also sources and sinks of particles.

Considerable attention has been focused recently on plasma injection

experiments [Brice, 1970; Cornwall, 1972]. By injecting cold plasma in

the magnetosphere the resonance energy decreases and it is expected that

wave-particle interactions become stronger as more particles will be

available at resonance. The fact that, in certain (quiet) times, the
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hot particle distribution is quite stable to electromagnetic waves casts

a doubt on the efficiency of such an experiment.

We have also demonstrated here that our method to study wave ampli-

tude variations caused by wave-particle interaction provides valuable

information concerning distribution functions. Provided we know the

flux of particles (which fixes the number of hot particles and one

parameter, namely, the energy parameter v), our method determines very

sensitively the anisotropy of the distribution function. As of now, the

number of available data is scarce, but a controlled experiment looks

very promising with the advent of ground based vlf transmitters such as

the transmitter of the Stanford VLF group, located at Siple, Antarctica

(75.550S, 83.55oW). Waves of frequency comparable to the minimum electron

gyrofrequency of the Siple field line should be transmitted. The observa-

tion of the amplitude characteristics of these waves onboard a satellite

orbiting close to the equatorial plane would provide particle distribution

information along the way described in this section.

D. WHISTLERS OBSERVED AT FREOUENCIES NEAR THE LOCAL ELECTRON

GYROFREQUENCY

Dunckel and Helliwell [1973] observed signals at frequencies close

to the local electron gyrofrequency, e.g., as close as A - 0.9 onboard

OGO-1 satellite. They successfully interpreted with ray tracing how the

wave could propagate. Since A is high, these signals must interact

with very low energy electrons. The cyclotron resonance energy tends

toward zero when A % 1 and secondly for A > 0.5, the wave becomes

eventually unducted and propagates close to the resonance cone. This

lowers the energy of resonance again.
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Choosing the same values of ray tracing parameters they used, we

investigated whether the distribution used in the preceding section is

compatible with these observations or if we should have a different model.

The caption of Figure 4.4 explains the data and shows the value of

parameters and Table 4.4 shows the corresponding values of integrated

gain from 1000 km altitude up to satellite location.

TABLE 4.4. GAIN BETWEEN 1000 KM ALTITUDE AND SATELLITE.

The gain is expressed in decibels. f = 80 kHz:

The ray starts at 550 latitude, vertical incidence.

In the ray tracing, the plasmapause is located at

L = 3.9 (see Dunckel and Helliwell [19731). The

parameters of the ray tracing are:

L %(o) G (o )  A W RO(keV) Rl(eV)

S: 3.6766 36.67 -13.66 0.883 4.46 78.1

B: 3.2894 32.27 -18.42 0.916 1.65 13.7

-3 -3
6E = 4x10 and n(W > 100 eV) - 1 cm ; W = 20 eV.

PATH V= 5 5 5 5 5 5

q= 4.5 4.8 5 0 2 4

V = 0.4 0.4 0.4

AS GT= -7.61 -6.12 -5.28 -128 -11.3 -1.17

GL= -0.43 -0.36 -0.32 -1.34 -0.13 -0.015

GP= -6.27 -5.02 -4.33 -124 -10.9 -1.14

AB GT= -72.6 -59.4 -51.9 -1100 -140 -21.6

GL= -4.62 -3.93 -3.52 -14.3 -1.95 -0.32

GP= -44.4 -36.0 -31.3 -916 -126 -17.7

It is seen in Table 4.4 that the gain with a nonseparable distribu-

tion or a separable distribution with an anisotropy of q = 2 would
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OGO-I

B

550

2 3

L= 3.9

FIGURE 4.4. RAY TRACING AT 80 KHZ TO SIMULATE OBSERVATION OF LF

SIGNAL ON OGO 1. Ray commences at 1000 km altitude,

vertical incidence, and 550 magnetic latitude.

S: L = 3.6766 X = 36.670 0 = -13.660 A = 0.883 WRO = 4.46 keV WRI = 77.5 eV

B: 3.2894 32.27 -18.42 0.916 1.62 13.5

Point B corresponds to the highest normalized frequency

along the path. For further details see Dunckel and

Helliwell [19731.
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yield small attenuation at the satellite location. The reason is because

the satellite is far from the equator (XS  370) and there are few resonant

particles available at the satellite location because of two reasons: 1)

Many particles have mirrored before the satellite location; and 2) the

refractive index decreases with latitude which causes increasing energy

of resonance and hence fewer particles at resonance.

It is interesting though to notice that if the satellite had crossed

the ray path a few degrees lower in latitude at X ~ 32 , to which

corresponds the highest value of A( - 0.92) along the path, the damping

would have been important for the nonseparable distribution. Such a

satellite path would have been most interesting to test the validity of

our model.

For all distributions the Landau interaction is negligible, and

the wave is interacting mostly with very low energy electrons in some

portions of the path.

This LF wave, though of much higher frequency than the waves con-

sidered in the last section, has some identical characteristics. Namely,

the wave propagates in the ducted mode up to a high normalized frequency

and then rotates inward and propagates in the unducted mode. Both

because the normalized frequency is high on the unducted part and because

on the unducted part they eventually propagate very close to the resonance

cone, these waves interact with very low energy electrons (i.e., less than

100 eV). Because there is a complete lack of data in that energy range

and because satellite measurements become more difficult at low energy

(spacecraft potential effect, etc.), whistlers may very well prove to be

a unique tool for measuring very low energy particles. An experiment

similar to the experiment described in the last section may be envisioned
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for that purpose.

E. MR WHISTLERS

Magnetospherically reflected (MR) whistlers were observed for the

first time by Smith and Angerami [19681 and studied rather extensively

by Edgar [1972]. An example of an MR whistler spectrogram is given in

Figure 4.5. The explanation of such whistlers in terms of accessibility

(see above references and Figure 4.6) is the following: These waves are

generated at low L values and their frequency, normalized to the

equatorial gyrofrequency of the field line of generation, is small and

stays below the LHR during an important portion of their path. In the

absence of ducts, the wave propagates with a large wave normal angle

which generally increases with distance. Since the wave frequency is below

the LHR, the refractive index surface is closed (see Chapter 2), there is

no limit for the wave propagation angle and reflections can occur.

According to the input latitude, the satellite can record different

components which have been reflected a different number of times, labelled

as MR 0+, 1-, 1+, etc., as sketched in Figure 4.6.

Edgar [19721 explained the characteristics of the spectrogram of

Figure 4.5 (and similar other spectrograms) through arguments invoking

accessibility. We see several important features of MR whistlers in this

spectrogram, namely, both upper and lower frequency cutoffs, and emission-

like structures at the upper cutoffs. This last feature suggests that

wave-particle interactions may play a role in MR whistlers and may account

for both upper and lower frequency cutoffs.

Thorne [1968] postulated that all but the Landau interaction can be

neglected both because A << 1 and e is large along the major portion
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0-
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FIGURE 4.5. FREQUENCY-TIME SPECTROGRAM OF A TYPICAL MR

WHISTLER OBSERVED NEAR THE MAGNETIC EQUATOR.

SEL 73-043 100



.SATELLITE

C2

A2 B2 C2

200 100
300

40*

500

FIGURE 4.6. SKETCHES OF RAY TRACINGS TO EXPLAIN THE FIRST

THREE COMPONENTS OF WHISTLER SHOWN IN FIGURE

4.5. The ray tracing parameters are given in

Table 4.5.
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of the path, and computed total amplitude gain over a few typical MR ray

1
paths. He first used isotropic distribution cc - . He concluded that

vV
such distributions give too much damping and he resorted to distribution

with a secondary peak around 10 keV. The peak causes Landau growth along

part of the path, therefore reducing the damping.

Edgar explained the upper frequency cutoff as well as "emissions"

structures at the high frequencies purely on accessibility grounds. The

high frequency distortions are caused by the presence of ducts, and density

irregularities can account for the upper cutoffs. Edgar [1972] could not

explain the low frequency cutoff but we can suggest a very simple explana-

tion [R. A. Helliwell, private communication]: namely, the earth-ionosphere

waveguide acts as a high frequency filter with cutoff frequency at - 1.5

kHz during nighttime [Helliwell, 19651. (Note that the spectrogram of

Figure 4.5 was recorded in the early morning.)

Therefore it seems of interest to re-examine Thorne's [1968]

computations.

We integrated the wave amplitude gains for separable distributions

along ray paths whose parameters are defined in Edgar [1972] (see Table

4.5). We had to resort to separable distributions because of large values

of 6 and we have developed a program for arbitrary 9 only for separable

distributions. The choice though is not unreasonable. For cyclotron

harmonics, the energy of resonance is very high and we have seen (Chapter

3) that for high energy, the assumption of separability is reasonable.

The Landau interaction is much less sensitive to nonseparability than

the cyclotron interaction.

We present in Figure 4.7 the results of our computations for the first
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TABLE 4.5. RAY TRACING PARAMETERS TO EXPLAIN THE MR WHISTLER

OF FIGURE 4.5. The parameters were chosen after

Edgar [1972]. The rays begin at 500 km altitude,

vertical incidence, and latitudes between 200 and 400

to intercept the satellite located at L - 2.4,

X - 520 S. The diffusive equilibrium model is used

with 50% H+ , 50% 0+ at 1000 km, T = 1600 OK, and

n(1000 km) = 1.15X10 , with an irregularity of the

form n(r,L) = nDE(r).nc(L). nDE is the DE model

D (L-4)2 .
expression and n = 1 - 0.9 exp 1.6 The

c 1.6

sign of 6 is defined as positive measured clock-

wise from B

f(kHz) MR A e( ) WR0(keV) WR1(keV)

1.5 1- 0.023 -70.1 0.314 556

1+ -102.3 0.448 821

3- -84.1 1.01 1710

3 1- 0.046 -69.5 0.519 217

1+ -101.9 0.827 328

3- -83.5 1.60 750

5 1- 0.076 -68.7 0.752 119

1+ -102.3 1.36 209

3- -83.7 1.48 233

7 1- 0.105 -67.5 1.11 80.1

1+ -101.3 1.63 122

10 1- 0.150 -66.6 1.40 45.0

three MR components. In this case, the parameters influence in a complex

way the values of the gain and no simple discussion of the influence of

each parameter individually is possible. We see already from Table 4.5

that the ray path is fairly complicated. The ray path though is similar

for different frequencies but the same MR component. The wave propagation

angle is moving towards 900 as the number of the component is increasing.
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When e is close to the Gendrin angle 9G and w is fairly close to the

LHR, a few degrees difference in 6 may yield a big difference in resonance

energy as illustrated by the difference in resonance energies for the 1+ and

3- components of the 3 kHz frequency. It is important to compare the value

of a at the satellite (which is close to the equator where the interaction

is most important) with G. When e increases (as it does for increasing

component number), two opposite situations develop depending upon whether

e is below or above eG. Referring to Figure 2.4, when w is slightly

above the LHR, N11 decreases significantly when 8 increases while below

G , and increases very rapidly when 0 increases while above G. Corre-

spondingly, as the minimum energy of Landau resonance is inversely propor-

tional to N , the strength of the interaction decreases (increases) when

8 is below (above) 9G. This may be in favor of Landau damping for higher

frequency and higher component number, assuming the ray path behavior is

the same for different frequencies and the same component number. For

instance, denoting by BS the value of 6 at the satellite location,

9S 9 G for f = 5 kHz and the 3- component, and therefore 9S would be

beyond 6G for f = 7 kHz and the 3- component.

The Landau interaction is almost always dominating, though neglecting

the cyclotron interaction, as Thorne [1968] did, is invalid in some cases.

For example, for the case v = 4, q = 2 and the first MR component, cyclo-

tron growth overtakes Landau damping for all frequencies. Apart from this

case, the Landau damping dominates, but it would still be incorrect to

neglect the cyclotron interaction, at least for v = 4. As pointed out in

Section 3E, though the cyclotron resonance energies are much higher than the

Landau resonance energy for A << 1, the parallel component of the electric

field, which excites the Landau resonance, is small. For increasing v, the
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Landau interaction becomes more important relative to the cyclotron inter-

action. For v = 5, the ratio of cyclotron gain to Landau gain is of the

order of 10 to 20% and becomes negligible for v = 6 (of the order of 1 to 2%).

The question arises of what is the importance of the gain around the

turnaround point. In this case the approximation Eq. (2.71) is no longer

valid because the ions were neglected, and we have to take the correct

limit of Eq. (2.69). When 8 - 900 and w < LHR cos - 1, cos - 0
g

and there is an apparent divergence of the order 1/cosO. But pRm C,

m Iwith the order (cose) . At the same time dm = I(A-m)tanel . . like

1/cose and the integral in Eq. (2.68) - 0 like - - cose (see Appendix
m

A). It can be shown that H and F defined in Eqs. (2.68) and (2.69)

remain finite. Therefore

k. _ (cose)V- 3 , e = 900 (4.7)

For \) > 4, there is no interaction around the turnaround point. This

result just expresses that when e - 900, the resonant energy tends

toward infinity, and as the number of particles must remain finite, the

number of particles at infinite energy is null. (Boundedness of the

number of particles means v > 3 and therefore from Eq. (4.7), k. = 0ig

as 8 ? 900.)

The damping is larger for j = 4 than j = 5 because of choice of

normalization. The minimum energy of interaction is always bigger than

100 eV and we keep the number of particles above 100 eV to be the same

for every distribution. As already mentioned in Chapter 3, this means

more resonant particles and hence stronger interaction for harder spectra.

The influence of the anisotropy factor is more complex because of

opposing effects (see Section 3C). Higher anisotropy means stronger
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interaction because of increasing slope of the distribution with respect

to pitch angle. It means also weaker interaction because of a decreasing

number of particles at resonance (the average resonance energy increases

and particles mirror closer to the equator). Finally, the cyclotron

interaction acts differently for isotropic and anisotropic distributions.

The most important fact to notice is that for an anisotropy q = 2,

the damping is never important enough to cause a sharp cutoff, in contrast

to an isotropic distribution which could explain the higher frequency

cutoff. Therefore, a distribution with a secondary peak in energy is not

at all necessary to explain the observation of high frequency portions

of MR whistler components as suggested by Thorne [1968]. The anisotropy

of the distribution is sufficient for this purpose. Anisotropy must be

present because of the loss cone (the more important, the lower the L

shell) and isotropic distribution may not be likely in general, according

to Sections 4B and 4D.

In fact, for v = 5, even an isotropic distribution would yield

reasonable attenuation. Moreover, let us be more explicit about the

normalization we chose and express it in terms of differential flux at

900 pitch angle. At the satellite the total particle density we used

-3 -
for ray tracing is - 2500 cm -3. With our normalization (6El = 4 X10-3),

there corresponds a differential flux at 10 keV (see Figure 3.5):

4 -2 -1 -1 -1
dW(10 keV) - 4x10 cm *sec .sr ,eV v=4, q=2;

3 -2 -1 -1
dm(10 keV) - 6x10 cm .sec .sr .eV , '=5 , q=2. (4.8)

Therefore, even for a value of ' = 4, if we take a more reasonable

4 -2 -1 -1 -1
value of the flux of the order of 10 cm *sec -sr *eV like Thorne

[19681, we do not obtain much attenuation.
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We deduce that the analysis of MR whistlers for monitoring the hot

electrons in the magnetosphere is, at the present time, limited. Know-

ledge of the particle flux is a prerequisite to drawing any conclusions.

It may be interesting though in the future to test whether the high MR

whistler frequencies may suffer high Landau damping relative to lower

frequencies because high frequencies propagate sooner beyond the Gendrin

angle. An experiment to test this effect should be done on satellites

above ionosphere irregularities to eliminate the accessibility problem.

An interesting experiment has been proposed by Edgar [1972]. He showed

that it would be possible for a wave excited close to the Gendrin angle

to propagate in the MR mode along field lines, reflect and come back to

the satellite (the "boomerang mode"). On the return path to the satellite,

the wave would propagate beyond the Gendrin angle, favoring heavy Landau

damping.

F. CONCLUSION

We have demonstrated that separable distributions proposed by Liemohm

[1967] are incompatible with Angerami's [1970]1 observations provided:

1. The theory presented in Chapter 2 is adequate

2. Particle fluxes at the time of Angerami's [1970] observations

are comparable to fluxes observed by Schield and Frank [1970].

We have shown that the model of nonseparable distribution we have

proposed in Chapter 3 is consistent with both these observations and

particle observations. We summarize in this section the implications

of this new model, and the application of our analysis to a diagnostic

tool for monitoring the energetic electrons in the magnetosphere.

Our model of distribution involves a certain equilibrium between

low energetic particles and electromagnetic waves in the magnetosphere

SEL 73-043 108



(neglecting sources and sinks of particles). The fact that the hot

particle distribution may be quite stable to electromagnetic waves casts

a doubt upon the efficiency of plasma injection experiments.

With our analysis, we have obtained valuable information concerning

the hot plasma in the magnetosphere. Knowing the energy parameter v

from Schield and Frank's [1970] data, we assessed a lower bound on the

anisotropy factor q of our model from the value of the upper cutoff

frequency of the whistler shown in Figure 4.1a. From the condition that

the difference in gain should be small between this upper frequency and

any lower frequency, we assessed a lower bound on the coupling factor

q of our model. This method could be used in a systematic way in a

controlled experiment which would involve a ground based transmitter and

a satellite orbiting near the equatorial plane. Data similar to Angerami's

[1970]1 or Dunckel and Helliwell [19731 should be obtained with such an

experiment. An experiment using MR whistlers and a satellite seems also

desirable to obtain information about hot electrons. The boomerang mode

looks most suitable for that purpose.
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V. GENERAL CONCLUSION AND SUGGESTIONS FOR FURTHER WORK

The purpose of the present work was the consideration of two prob-

lems. The first problem involves the study of wave amplitude variations

for arbitrary wave frequency below the electron gyrofrequency and arbitrary

direction of propagation. The second problem involves the determination

of a realistic model of energetic electrons of the magnetosphere.

The instability characteristics of a few whistler observations,

whose accessibility characteristics were already thoroughly established,

have been investigated, and limits of distribution function models have

been set up.

The theory we used to compute the wave amplitude variations caused

by wave-particle interaction (i.e., whistler-electron interaction) was

based upon several assumptions. In Section A, we briefly discuss where

some of these assumptions break down. Section B will present a summary

of our study. Finally, in Section C we give some suggestions for future

work.

A. LIMITS OF THE THEORY

The theory we developed was based on the assumptions that:

A) The expression of the imaginary part k. of the wave vector k
-1-

is obtained from the coupled set of Maxwell equations and Vlasov equation

after linearization.

B) Ikl << Ikl . (5.1)

Our purpose here is to discuss succinctly when these assumptions may

break down. From Chapter 2, Assumption A is no longer valid if particle

trapping by the wave becomes important. This occurs if wave signal
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duration is of the order of trapping time, or more. We look briefly at

this question in Appendix B, where we take into consideration:

1. Natural whistlers. In this case, though the duration of the

signal is shorter than a trapping time, the question arises whether the

electron can be trapped because of wave dispersion and space inhomogeneity.

2. Ducted whistlers. For unducted whistlers, the wave moves across

field lines and interacts during a shorter time with electrons which are

compelled to drift along magnetic field lines than for ducted whistlers.

3. The region around the equator, because the important part of

the interaction takes place there (Chapter 3).

We used the criterion developed by Sudan and Ott [1971] and Dysthe

[1971] and conclude that in those conditions, trapping can only take place

for waves much more intense than average intensity waves [Burtis, 1969].

Assumption B insures that:

1. The real part of wave refractive index need not include hot

plasma corrections.

2. The ray propagates along the ray path predicted by cold plasma

theory and the group velocity keeps its full meaning. A "signal

velocity" concept [Brillouin, 19601 need not be introduced.

In Appendix C, we look at question (1) for parallel propagating waves.

We conclude that nose whistler dispersion cannot be used to test (1), and

that hot plasma corrections should be included at the resonance cone.

B. SUMMARY OF RESULTS

Based upon the above mentioned theory, a general expression has been

derived for the wave-amplitude variations of an electromagnetic wave in a

magnetoplasma. This expression.is algebraically simpler than previously

derived expressions [Kennel, 1966; Brinca, 1972] and, as such enables

easier computations and allows some conclusions by inspection:
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1. The instability character of each harmonic of the interaction

is straightforward.

2. The validity of the low-frequency approximation of Kennel [1966]

is tested. It is valid for e < 8G but not for 6 e R; Kennel's [1966]

approximation is incorrect for the Landau interaction because it neglects

an important term, even for 8 < G . However this does not invalidate

his conclusion that at e8 0, there is growth for a cone of angle

8< eS , though his value of eS  is incorrect.

3. Significantly more anisotropic distributions are required for

growth when 8 - 8R  than when 8 0.

A new model of distribution function has been proposed. This new

class of distribution is nonseparable in particle energy and pitch angle,

or in other terms, particles of different energy have different pitch-

angle distributions.

Our model is expressed mathematically by

exp[q(v /v) sin2 ]
f(v,a) cV (5.2)

vV

where v 1 is a normalization parameter. The parameters V, q, and

vq have a simple physical meaning: v and q express the energy and

pitch-angle dependence respectively, and vq expresses the coupling

between energy and pitch angle.

This function can be almost marginally stable over a large frequency

band for parallel and almost parallel wave propagation, in contrast to

previous separable distributions such as Liemohn's [19671. This model is

more realistic than separable models. It predicts an increasing slope in

spectrum with decreasing energy, in agreement with Schield and Frank's
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[1970] data. It predicts near isotropy at high energy, in agreement with

Bogott and Mozer's [1971] data. There is indirect confirmation of our

model, in the high energy range, by Kennel and Petschek's [19661 mechanism

extended to arbitrary angle of propagation by Lyons et al [1972].

Fortran programs have been developed to compute total wave amplitude

variations caused by whistler-electron interaction, integrated over a

ray path. The following conclusions were reached:

1. For a whistler trapped in a duct, the parallel propagation

approximation is valid for all frequencies (that is, below the frequency

of untrapping A - 0.5) and is valid for nonseparable distributions for

all frequencies except frequencies close to A - 0.5.

2. From almost simultaneous measurements of electrons [Schield and

Frank, 1970] and whistler observations [Angerami, 1970] we conclude that

separable distributions previously proposed by Liemohn [19671 are in-

compatible with observation. For the class of nonseparable distributions

we have proposed, bounds on the values of the three parameters, v, q,

and v are assessed. v - 5 is determined by the experimental spectrum

[Schield and Frank, 1970]. q - 5 is determined by the highest observed

frequency, and q - 0.5 is determined by the condition that the

difference in gain between two frequencies is small. The sensitivity

of the parameter q is important. There is a strong suggestion that

the flattening of the distribution around 750 eV in Schield and Frank

[1970] is caused by Landau interaction, because a flattening in the

distribution reduces the Landau interaction which eventually dominates

for moderately anisotropic distributions when -. R . There is a

suggestion also that a peak in energy should exist around a few tens of
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eV, otherwise the gain-rates would be too large.

3. It is possible to observe whistler waves in the magnetosphere

at a frequency close to the local gyrofrequency, provided the observer

location in latitude is far from the equator, simply because there are

few resonant particles at high latitude. If the distribution is aniso-

tropic, many particles mirror before reaching high latitude. Furthermore

inside the plasmasphere, the refractive index increases with latitude,

leading to an increase in the energy of resonance, and fewer particles

resonate with the wave.

4. Computations of total wave amplitude gain have been done over

some MR whistler ray paths, similar to Thorne's [1968] computations.

However in Thorne's paper the cyclotron interactions were neglected on

the grounds that the cyclotron resonance energies are much higher than

the Landau resonance energy, for A << 1. This assumption is incorrect

if the spectrum is hard enough, because, though there are many more Landau

particles than cyclotron particles, the Landau interaction is weighted

by a factor which decreases with frequency. However the Landau inter-

action always dominates after the first reflection. Anisotropic distri-

butions greatly reduce the damping so that it is possible to explain MR

whistler attenuation only by anisotropy without resorting to peaked

energy distributions as Thorne [1968] did.

Our model has some implications:

1. This model involves a certain equilibrium between plasma and
the electromagnetic waves that propagate in the magnetosphere.
This situation was predicted by Kennel and Petschek [19661, and
Lyons et al [1972] for high energy particle fluxes. Our analysis
suggests that waves efficiently control the low energy particles
also.

2. Plasma injection experiments rely on the fact that increasing the
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cold plasma density lowers the particle resonance energy and

therefore increases the number of resonant particles. Wave-

particle interaction effects should then become more important,

and noticeable effects may ensue. However, at times when the

distribution is quasi-stable (to electromagnetic waves) the

efficiency of the experiment is doubtful.

Extension of our analysis to a diagnostic method for monitoring the

distribution of energetic electrons in the magnetosphere may be envisioned.

However a selection in the type of whistler data is necessary:

1. Ground recorded whistlers are of some value for the purpose of

hot plasma diagnostics. They may be useful to confirm a known change

in distribution or to show that the distribution is not isotropic. How-

ever they cannot be used to obtain the precise shape of the distribution.

2. MR whistlers recorded on satellites and generated close to the

earth are of limited value. The particle fluxes necessary to yield

noticeable effects seem high, and a precise knowledge of the actual flux

is prerequisite to any further conclusions. High MR whistler frequencies

propagate sooner beyond the Gendrin angle than low frequencies as the

number of reflections increases. As a result, the Landau damping increases

with frequency and it will be interesting to test whether the high frequency

components suffer heavy Landau absorption after the first or second reflec-

tions. To eliminate the problem of accessibility a satellite-to-satellite

experiment is most desirable. The "boomerang mode" [Edgar, 1972] has the

merit of requiring only one satellite, transmission and reception being done

on the same satellite. It has the other advantage of using propagation at

the Gendrin angle and beyond, therefore increasing Landau attenuation,

and also, optimizing the transmitting power [Wang, 1970]. A strong

recommendation is made for a detailed study of this experiment.

3. A controlled experiment using a ground-based transmitter and a
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satellite would be most valuable for the purpose of hot plasma diagnostics,

provided that the frequency of the transmitted wave is comparable to, or

higher than, the minimum electron gyrofrequency of the field line of

propagation and provided that the satellite orbits close to the equatorial

plane. In these conditions the energies of interaction can be very low,

for two reasons. The wave propagates a certain time in the ducted mode

with a high value of A (low energy of cyclotron resonance) after which

it propagates in the unducted mode and approachs the resonance cone angle

(where both Landau and cyclotron interactions become important). Because

the lower the particle energy, the more difficult the satellite particle

measurements, this method may very well prove to be unique in measuring

very low energy particles (of the order of a few tens of eV).

4. Because of the scarcity of available relevant data, we could not

make a systematic test of how best to conduct the process of measurement

for the purpose of diagnostics. Two orders of sophistication in the

process are foreseen. The first method would eliminate an accessibility

study and would require only the measurements of upper and lower cutoff

frequencies. From the measurement of the higher frequency a lower bound

on the parameter q is determined and from the condition that the

difference in gain for different observed frequencies should be minimized,

a lower bound on the parameter v is estimated (along the way described

in Section 4C). For ducted propagation, the knowledge of the particle

flux seems a prerequisite (determination of parameter v). On the contrary,

for unducted propagation, knowledge of v may not be necessary, as the

conditions from one ray path to another may be quite different and from

the observed differences, v itself might be determined (or, it might

be deduced that a different energy law variation is needed to represent
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the energy spectrum). The second method would require the measurement of

dG/dw. This method is more sophisticated than the previous one because

it would first require a study of dG/dw due to accessibility (a problem

only recently approached [Dantas, 19721), to clearly assess the relative

importance of accessibility and instability effects.

C. SUGGESTIONS FOR FUTURE WORK

Besides the experiments we have mentioned, several suggestions for

future work can be made:

1. Similar computations should be done outside the plasmapause.

Going from inside to outside the plasmapause, the cold plasma

density drops abruptly. There is a change also in hot plasma

distribution, but apparently it is not the same change and

probably the instability characteristics are different inside

and outside the plasmapause.

2. A program should be developed to include a general distribution

function for arbitrary direction of wave propagation. In

particular, this will allow a study of very low energy electrons,

when a wave becomes unducted and eventually propagates very

close to the resonance cone angle. At the same time, hot plasma

corrections to the real part of the refractive index should be

looked for.

3. The stochastic analysis of Kennel and Petschek [1966], and Lyons

et al [1972], which takes into account possible sources and

sinks of particles, should be extended to higher frequency waves

and low energy particles.
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APPENDIX A. PROGRAM TO COMPUTE NONPARALLEL GAINS

Separable distributions:

Inserting g given by Eq. (3.6) into Eq. (2.71) yields:

cost Mn2
k. =k +k A b-q/2 v-3  g __kig = kiL + k. = -i 6EAq cos 0+
ig IL ic 8 Elq 1 3 2 [iL -ic '

co

I-iL q+2
4(V+q) (sRa) O

0

N DHN D 2

X -C - JO(N0 1 0) 2C p 0 1 2 1 dp

c1o

-- ic mfO q+2 Rm

2 2
ml 2 (Np/p) ml mO m2 2[n (N1 Ap /pO) + J Jm-l + J 2 j dpC 0 m-1 0 C2 m- Im+l +  CO m+l 1

(A.1)

kiL and kic represent the contribution of the Landau and the

cyclotron interactions respectively to the overall whistler mode wave

interaction.

In the last expression we have to compute integrals of the form:

co f iq--- J J (NAp/Po)PdP mBrs(d

s r s 0 Rm Rm2- q m

n/2 +1J (a)da

Brs (d ) = (sin) q+l (cos)v-3J J (d tana)da = dv-2 aq+lr s ( a ) d a

)q m (cosa) rs m m J q+\

0 0 2 2 2
[d +a ]

m

m-1, m-1
d m = IA-m tane; r,s = m-1, m+l . (A.2)

m+l, m+l
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Inserting the coefficients B rs given by Eqs. (A.2) into (A.1)
vq

yields:

-k . A b //2 COS59 [( A COc+ ''-iL
k 8 El ,q 2os k k

k p %,- NN 0
iL 1 cosO-A 4(,+q) 11 1 ( d

k pR A C v)+2,q d

N N IDH - 00 00 2
tan 9[(q+2)B -(, -q+2)B ] - B

AC2 V+2,q v+2,q+2 C0) ,q+2

0

kic 1  cos-v- Cl mq m-1-l m-1,m-1
k = C B (d )-(v+q)B-,m-1
k p m-A C A \,q m Vq+2

m 0 Rm I 0 I

2CmlC m2 mq m-l,m+l m-,m+q +
+ B -(+q)B

2 A ,q 9,9+2

+ m2 mq m+l,m+1 m+l,m+l (A3)+ (Cm25 B -(V+q)B
CO A ,q v,q+2

From Eq. (A.2), there is an identity between distributions of different

order in V and q:

B = B -B (A.4)
v,q+2 ,q v+2 ,q

Similarly, there exists a couple of recurrence relationships between

sucessive resonance harmonics. Using the identity

2 2 2m d 21
J (x) +J J ,I
m-1 m+l x dx i

m+l,m+l m-l,m-l mm mm
B (d ) =B + [qB -(q+)B ] (A.5)

9,q m V,q v+2,q-2 v+2,q

and using the identity
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1 2 2 2m 2
J (x)J -(J + J )+ J
Jm- Jm+l 2 m- m+l 2 m

x

2
Bm-m+d 1 m-,m-l+ Bm+l,m+l] 2m Bmm

Vq m 2 ,q V,q d2 +2,q-2
m

These last two relations permit us to deduce all the coefficients

mn 00 11
B , mn 00,11, from the values of B and B

When v is an integer, the coefficients B can be integrated

analytically by means of relations involving different kinds of Bessel

functions derived in Watson [1958], for example:

ada 2 mmada J2(a) = I (d) K (d) = Bm (d) (A.7)
Sa2 d2 m m m 20

where IO and K0  are the modified Bessel functions of first and second

kind respectively.

By derivation with respect to d, we can obtain the values of the

mm
coefficients BO , m = 0.1, and V even:

mm d mm
B40 - 2 [B2 0 ] , etc. (A.8)

From the asymptotic expressions of I (x) and K (x) for
n n

x I >> n, 1 (see Watson [1958] for example), we deduce:

1 1 27
I (d) K (d) 1 2+ +
S 0+ + 235

16d 256d

I (d) Kd) 3 45 d >> 1 (A.9)
16d 256d

Keeping the first term in Eq. (A.9), we see that

B M  1 di > 1 . (A.10)
40 d

mm
For higher values of v, the coefficient B tends also

V0

asymptotically towards a l/d variation, and from Eqs. (A.4), (A.5), and
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(A.6) all the coefficients have this asymptotic behavior.

For odd integer values of v, we can also obtain the coefficients

Bmm  in closed form [T. F. Bell, private communication], though not by
vq

straightforward derivation. Even for even integer values of v but for

mm
high values of v and q, a closed form for B requires calculations

Vq

of high order derivatives. This may be tedious and it is easier to integrate

mm
numerically the coefficients B for 0 < d < d , and use the asymp-

vq a

totic form Eq. (A.10) for d > d a

A listing of the program is given in Table A.1, and an example of

the computer output is given in Table A.2.

Nonseparable distributions:

A program is developed for small values of 8, for a distribution

function given by Eq. (3.22). From Eq. (3.25), k. is given by:
ig

ig A g -iL -k kc2

cos 8 -

k Un n P 1 V+nq-3
= ; bn - (v+nq +2) - (v+nYq+2 ) 1)

k n=0 q pRO RO

2 2
2 cos 2d

Asin e cos Asine B
Asi- B - cos9 dB + B
cos-A v+n+2, 2  cos8-A 0 v-+nq ,2n+2 4 B+nq-2,2n+4'

k b n p v--n
-icl b - n q Il 1 q cos-1)

n=O R

2 2 -222

Scos - (cos-A) (+n +2n)B +n 2+2n -2+n 2n

2 q -2+n , 4+2n - )-2+n 2 Vq 2+2n,2n
121 SE 73043
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n qn 1p IV+ny -3 cos 2
m n p cos9-A 2

! ic2 b V 2-A 2
n=O R2

X (v+nvq+2n) B 2+n q 4+2n A B2+2 (A.11)

A listing of the program is given in Table A.3, and an example of

the computer output is given in Table A.4.
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TABLE A.1. LISTING OF THE PROGRAM TO COMPUTE THE GAIN INTEGRATED ALONG

A RAY PATH FOR SEPARABLE DISTRIBUTIONS.

SWATFIV
C THIS PROGRAM COMPUTES THE WHISTLER MOF WAVE AMPIITUDE GAINS (I I DB.),

C INTEGRATED OVER A PAY PATH WHOSE OARAMETPRS APF GIVFN Y THN STANFTOR
)

C VLF GROUP RAY TRACING PROIGRAM. POSITIVE INEGATIVF) GAIN MFANS WAVE

C GROWTHIWAMPING). THF ENERGETIC ELECTRON DISTIBUTION IS PROPORTINAL TO

C SIN(ALPHA)* Q/P-*NU, WHERE ALPHA AND P ARE RESPECTIVELY THE ELFCTRON

C PITCH-ANGLE AND MOMENTUMN, NU CAN TAKE INTEGER VALUES FPOM 4 TT 10,

C AND 0 CAN TAKE EVEN INTEGER VALUES FROM O TO 1I-2*INT(IU/2). M IS THE

C ORDER OF CYCLOTRCN HARMONICS. THIS PROGRAM INCLUDES VALUrS FROM M=0 TO

C ABSIMI=3 (M=O FOR LANDAU HARMONIC, M=1 FOR FUNDAMENTAL CYCLOTRON

C HARMONIC)
C
C INPUT:
C FREQUENCY OF THE WAVF(KHZ), INITIAL AND FINAL GROUP TIMES

C ILINES 46 AND 47).

C L VALUE, LATITUIOEIDEG.), NORMALIZED FREQUENCY, WAVE PROPAGATION

C ANGLEIOEG.I, DENSITY(CM-31,GRDUP TIMEISFC. ILINES 57 AND 58).

C
C OUTPUT
C FREOUENCY OF THE WAVE(KHZI, INITIAL AND FINAL GROUP TIMES

C L VALUE,LATITUDF(IEG.I, NORMALIZED FRFOQUENCY WAVE PROPAGATION

C ANGLE(DEC.I, OENSITYICM-3), PLASMA FRFOUENCY NORMALIZED TO

C GYRPFREQUEICY, PARALLEL COMPONFNT OF REFRACTIVE INDEX, MINIMUM

C RESONANCE ENERGY FOR LANDAU AND FUNACMENTAL. CYCLOTRON INTER-

C ACTIONS (KFVl.
C G&INS INTEGRATED FROM INITIAL TIE, INCLUDING RESPECTIVELY:

C ALL HLPMONICSIM<41, LANDAU HARMONICFUNDAMFNTAL HARPNlNIC,HIGHER

C HARMONICS, PARALLEL PROPAGATION APPROXIMATION, NU, AND O.

C
C LIMITS
C HIGH PASMA FREQUENCY APPROXIMATION FOP REFRACTIVE INDEX, BUT

C INCLUDE IONS. RELATIVITY NOT INCLUEFD.Tn PPINT DIFFERENT VALUES

C OF NU AND Q (BUT IN THE PREVIOUSLY DEFINED ANGFl, CHANGE

C ACCORDINGLY LINES 126 TO 146, 191 TO 211, AND 254 TO 274.

C TO I NCLIUDE DESIPE) NLIMBER OF HARCNI CS, CHOSE APPPOPRIATE VALUE

C OF M IN LINE 244.THE INTERVAL OF INTEGRATION IS DTATG=O.02 SEC

C OR MORE AND CAN REF CHANGED APPROPRIATELY IN LINES 63 AND 64.

C THE DISTRIBUTION FUNCTION IS NORMALIZED TT OF=0.0O04, WHERF

C DE=PATIO POT PLASMA DENSITY FOR ENEPGY>I00FV TO COLD PLASMA

C DENSITY; CHOSE APPROPRIATE VALUE OF OF IN LINE 248.

C
C FUNCTION FACTORIAL

I FUNCTION FFFIN)
2 IF IN.EQ.O) GO TO 2
3 FFF=
4 Don I=I,N
5 1 FFF=FF FI
6 GO TO 3
7 2 FFF=
8 3 RETURN
9 END

10 FUNCTION ANO(NUNO)
11 ANOQ

=

12 JQM=NQ/2+I
13 DO 11 JO=1,JCM
14 II ANQ=(FLOAT(JQ)-0.5)

4
AN 4

15 ANQ=ANJ*2(NU-3) /FFT(N0/2)
16 RETURN
17 END

18 FUNC T I9 R NO(NU,NO)
19 PNO=1
20 JM=.NQ/2+1
21 GO 10 JO=,JCM
22 10 BNO=N0/(NU/2.-2 .+FI.OATIJO II
23 8NQ=FFF(IN/2 IBNO/2
24 PRETURN
25 END
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26 DIMENSION 5S20) ,SC(2-),SL(I2G),SC1I20)

27 n I E NS IIFN GWSI2 O)IGASc 20) ,GWSL 20 ,GWS (201

28 0IMENSION OGWS(20)

29 DIMFNSION 53(11,2,51)

C 90=IFTEGRAL 
;
ONs 0 T PI/2 OrF SINX*COSX* *INU-3JJOCI( lTANX*

.
*2.

r D VARIES FROn ) TO 5 BY STEO 0.1.
C 631,*,1)= B(F=o) , H J1,*,7

) 
= i(n=.|) ,FTC...

C 11=NIIVARIATION, 12
= ' 

VAI ITION, 13=0 VARIATION

3) TIME NSIn R'r111,60,?

C II FU14 N VAR.V N'U-) I2 F' Q VAR. = 0/2+1 13= P VARIATIION

C 8NC(L1,6bLl=(4,0,2,2C, INCt10,6,1 Cl)(5,0,2,2) ,ETC..

C BN(11I,5,2=8(4,2,0,2), )N(10,5,21=
1
15 ,2,0,2), ETC...

31 INTEGER Au,Q

C AU=NUt,AQ=Q
32 RPAL KIKKIKLAN,KIKCV

33 REAL LAKIG

34 PRAL INVL
35 REAL LAT

36 LOGICAL PT.6r

37 DP ?03 L=1,2

38 DO 230 NU=I, 11

39 PFAD (9,24) BONU,L,1)
40 24 FORMAT (F8.6)

41 O 200 K=1,iC

42 FAL)(5.,23) ( 0NUI-,J+IK-)5),=J=2,6)

43 23 FORMAT( SEE'. 7)
44 200 CONTINUE

C PFII INPUT DATA FROM COL) 8LASMA QAY TRACING

45 10001 READ (5, 46 ) FKC TGJEW, TGLAST

46 460 FORMAT( C10.4,F
l ,
36,

F
L)..6)

47 w'ITCt4,4950) FKC ,TGNW,TGLAST

48 4550 FOR3AT'IFKCt=', FL3.4, TG=',FIO.6,' TGI AST=',F10.6I

C FKC. IS FR'1UF'ICY SIGNAL INl FrZ

49 TPUC = .FALSE.

50 01t 118 l=1,2C
51 TGWSII) = ).

52 (;WS( I =0.
53 GwSL[) = 3.

54 GWSCII) = ).

55 GWSSIII = 0.

56 118 CONT INUE

57 130)0 PEAD(5,49 ,
F

n=
Q O
9

)

% INVL,EAT,LA,THFTA,IOrFNS,T(

48 490 FrRMATIF10. 5 ,FLo .2, Fl).4,F13.2, 1I , Fl).6)

0O TPUC = .NIIT.TPUC

60 IF (TRUC) TGeOLD=T

61 IF (.NIOT.TI'UC) TCrlW=7TG

62 DTATG = AqSI TGNEw-TGrT LD)

63 IF (OTAT .LT.O.02) TRUC = .10T. TRUC

64 IF (DTATG.LT.O.02) GC T') 10030

65 DFGRAD = 3.141502/11)

66 IF (THFFC-.FQ.90.I TCETA=99.99

67 TIiFTAR = THrTADEGRA
r
)

68 RFTA = LA*8.984rSQRTiLOATIIIENS)I/FKC

69 DCl = (1-LA)*TAN(THETA)

70 OLAN = LA+TAtCTHFTA
R )

C IDENS IS rFNSITY IN oARTICLES/CUPIC CENTI
MF

TFES

C PETA=PLASMT F4EOUCNCY/YOOREQUENCY

C LA=WAVE FRFQIIENE'V/GYRFRr'IUENC
Y

C TicTA=ANGLF OF PP'lPAGArIL0 N wITH RESPECT TO THE "AG10TIC FIFLD
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71 COSTA = ARSICOSI TIFT R) I

72 SINTA = AS(ISINI THETARI I

73 OFLTA =I-1/(43*LAI*?2
74 COSTAD = COSTA-LA-DELTA
75 TALPHA=blI!TA/ (?(CDSTAG ))

C THETA HERE IS FXPPESSED IN DEGREES

76 TALPHA= 1/S'R T(I +TALLPHA*2

77 RIND = RETA/SCPT(I(COS
T
A
- L

A*
D
ELTAI*LA)

C PIND=REFRACTIVE INDEX

78 P10=.02
79 PrIND=BETA/SCRT( I -LA)-LA)

( PRIND=PARALI Fl PTFRACTIVE INDEX

80 PPA= R IN'COSTA

81 QPEP=RI rJD*SINTA

82 11 = COSTA*I 1/I. -LA)

83 SD = RETA*4"2 / (L
A
*I
(
-LAO*211

84 SP=-IRE
T A

/L
A 
I 2

SP = STIX P PARAMFTE~
PR PP1=AS(I A-I /( PR I"MOLA)

C 1D= STIX D PARAMETFR
$6 CO=2ABISSPI
87 PRLWAT = (1-LA)I/(OARELA)

C PRIWAT IS THE FlP. MENTIIJ OF RrSONANCF

C PR 1= MENTUM FRQ PAP8LLEL PR!nPAGATION

88 WO = 512.
8P9 I = WOPuIWAT*?*2/7
90 PPOWAT = L/PPR

91 WLAN = W3(PROWAT)**2/2
C PROW T IS THIF FSAiNACR MC3FNTUII FOR LANCAU INTERACTION

92 PWC1WL = WC1/LLAN
C IwO=MO C02
C WC8 AND WLAf; ARP PESPTCTIVELY THE MINIMUM FNERGIES OF PFSONPEACE FOR

C FIIND AMFNTAL AN LANDAU nESONANCFS TIN KFV)

03 WRITEI6,480)
44 460 FORMAT('O', * L AT LAMRUD THIFT BETA

$ TFNS T U0tcOS WLAN WC1' I

95 WRITEt6,473 INVI,LCATL ,TLIITABTA. I 'FNSETRPARWLAN.WCI

06 470 FlMIAT(F LO. 5,Fl.?,F1J .4,F l
. 2 F

.10.. 110,
F 10.4,P 0.2 2E11.3)

07 WRITE(6,4401
98 440 FORMAT I' GIT GWL GWC GWS PGW

& NU r) I
99 M=0

100 IF (1 iE1.O) nf TP 43
1Ol 157 COATINU

F

102 Cl1 =I(R ETA/I.AI2*(I1C1STA) + PPFPR *r2A/R
) /

C
O

103 C2 =(IIETA/LAL *;R(1-CSTAI + RPER*2*LA/M)/CO

C CMI=CCEFFICIF T O F RESSELF FUNCTION OF ORDER (M-I) IN KIG AND

C CME2=CCE
:
F. OF SASSEL FUNCTION OF ORDER (PIo)

104 43 PPM = ASS ILt.-M)/(RPAR*LA)
C PRM = NORPAL IZF M'JiENT!II OF RESONNANCE (TO P3=MO CI

105 0 =A
S I

(LA-I 1) NTA/
C

STAI
106 IF (0.EQ.0) CO TO 159

C STATEMENT 159 FOR PAPALLFLE PROPAGATION

C BEGIN OFFINITION OF J3.2 AND J1_2 TERMS

C INTEOPOLATIO
N 

FIR HIQ=O)I
107 55 PJ=10.0
108 J=INTIRJI
109 DO 95 L=l1,

110 DO 95 IU=l1tI'

II1 IF ID.LT.O.I) NI(NU,I,L) = BOINU,L,I DT**210?3(RO(!U,L,2)
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S -ROINU,L,1 I
112 IF I (0.GC.. [.1 .AND. (D.LT.5.1 )

ISRIfNU1,I) = (RJ-J) * (IO(NU,L,J*2) - ROINULJFI) + BO(NU,LJ+1)

C ASYMPTOTIC FXPRFSSION WHEN D>5
113 IF(D.GE.5. ) BN(NJ, 1,LI=EOI(NU,L,11

114 95 CONTINUE
C END INTERPOLATION
C COMPUTE R(Q-0=3)1 ND (0,.1) FOR M

115 DO 12 L=1,2
116 PTRUE=L-1
117 00 12 JO=1,5
118 JNM=11 -2*JO
119 NATRUE=2*J
120 DO 10 J.U = 1,JNM
121 5N(JN'J,JQ1,L) = RN(JNU,JQLl - SNIJNU+2,JQ.L)
122 10 CONTINUE
123 12 CONTINUE

C END OF DEFINITI0iN 11F Jo- 7 ANi J1l*2 TFPMS
124 IF (4.NF.0) GO TO 163

C 1EGIN LANDAU TEF
125 00 5100 1=1,10
126 IF II.FO.1 1 U=4
127 IF (I.FQ.2) AU=4
128 IF (I.EQ.3) AU=4
129 IF ( 1.FQ.4) AU=4

130 IF (1°0.5) lU=5
131 IF (I.EU.,) dU=5
132 IF I I.FO.7) AIJ=5
133 IF (I.FQ.8) AU=6
134 IF (I.EQ.9) AU=6
135 IF (I.E .10) AU=b
13t, IF I.FQ.1 AQ=0
137 IF (I.EQ.2 I AO=2
138 IF tI.FQ.3 ) AO=4
139 IF (I.EQ.4 ) AQ=6

140 IF (I.Q.5 I 1=3
141 IF ( .EQ.5 ) AQ=0
142 IF .5I .6 D.)=2
143 IF ( I.EQ.7 I AQ=4
144 IF (I.EQ.3 I A3=0
145 IF I .FQ.9 ) AO=2
14, IF I .EO.10) Q=4
147 NU=AU
146 NC=AQ
149 JNU=N0I-3
150 JQ=NQ/2+1
151 TL = IRPA'*PPERI**2ORNIJNU+2,JQ, IL/CO**2
112 IF IO.LT.0.21 T2= D*INQINU,NQ02)(RPAP*RP ER*SDOP/CO3**2
153 IF (0.;E.3.2)

IT2 = I(NO+2 1'!(JN'ilt2,J ,1 I-INU+NO+2IP*RN IJN U+2,JO .+1,I I
S PRPAR*PPEp=SO*H/(OtC3*2 )

154 T3 =(SO*Hl 29N (JN t,J+1 ,2)/CO**2
155 SUMLAN =-IrtNAlII (T1-12+T3)=4
I q6 SUMLAN=SUMLAN( P I 0O/ ;* (NU-3 l ICOSTA-LA I /t
157 IF ID.GE.5.) SiJMLAN = SUMLAN*5/'
156 S'M=SIU-L AN
15', SI ) = SUM
160 SL(I) = SUNLAN
161 5100 CONT IMJF

C FND LANDAU TEOM
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162 N=l
163 GO TO 157
164 163 CONTINUE

C END COMPUTING THE COEFFICIENT B(NU,.,MINI)(
C BFGIN TERMS I'I J27t2 AND J3*J AM10 SUPERICR CPDFRS
C COMPUTE PIIU,0.2,2)

165 14 NUJM=9
166 MTRIUE=M+ I
167 PM=MTRUE-2
1h IF I(N1lI.LT.O) GP Tf 1001
16U O 28 Nl C=1M 

I
U

173 RNIL2-9t6,1) = eN('NIJ,1,l - 2*INU+3)*pN(NU+2,Z)IO**2
171 BN(12-NU,6.2 =1
172 28 ClINT I NUE
173 KUM=lJM-2
174 IF (NUM.LT.O) OfJ rT 999
175 Do 29 NII=1 ,NLM
176 PN(1 12-N-,,1 = 12-IJ,6.1) - RN(10-t,,5,E
177 R.I12-NI),,2) = -n(I)N,2,I).8N(12-NU,5, II)/2+e9)NII+2.1,2)I2

S*(IID)l**2

17Ts 29 CONTINUE
179 99 CONTINUE

C COMPUTE 9(NIJ,1-a 0 NL 2,2,?) .NI) NU,0-P*C A0 2,0,2)
80 n0" 15 L=l,2

181 08 13 J'=1,3
1P2 NTRPUF=2 'J+2
103 JNM=N IM-2 J,
114 I (JN I.LT.3) GO T1 9Q8
15 0o I1I Jr1lN=W,JNM
L136 i !12-JNJ,5-JO,L) = ANII?-JNI,6-JQL) - PEl)10-JNU,6-JOL
187 11 CONTINUE
133 13 CONTINUF
184 93'8 C:,NTINJE
190 15 CONTINIIE

C r'D TCPMS J252 AND J']J2
C RFGIN FIRST CYCLCTREON r54

1o1 2O 513j1 (=1,1
LZ2 IF (I.1. .11 AtJ=4
1)3 I [.").2) AJ=4

194 IF 1(.F1.3) AU=4
15 IF 1. %.41 AU=4
196 Ir (1I.Q.51 AU=5
I- IF (I.!- .6) AU=5
196 IF (1 .FQ.7) IW-5
L99 (I.I- . ) AU=6
23)0 IF (I .EQ.31 tl= ,
701 IF (1 .FQ.13) AJ=6
202 IF I.FQ. I AO=0
23' IF I11.0.7 I AO=?

204 4F I.EQ. 9 '1=4

205 IF ( 1. 0.4 A(=0:
20 6 Ir I.O.5 I AQ=0
201 I5 (1Ir.6 I 83=2
208 Fp (1 .EQ. I A.=4
209 IF ( I .E3.8 1 AQ=0
210 IF I( 1I . I A03=2

214 J:NO/7 I+ 1
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215 JN=NU-3
21u T2 = 2-Cr'1lCY2 - ( tl( 12-JN,7-JO,2 I-(*NQ/L A - (I 01NU I

$ PNI12-JF'o-JO,2) )
217 IF (D.LT.0.2) T2=3
218 IF I 9S(~I.GT.1) T2=')
219 IF (M) L,1,2
220 1 COFNTIN UE
221 IF (I.GT.I) WI' Ti) 2
222 Cp12=CM1
223 M1I=CM2
224 CM2=CM12
225 2 TI = C1'2 * I (JN1J,,1)*FQO/LA - INQ+"UIIE,(IJNJ+1,I)I
226 IF (M.1 T.-I) 71=
227 IF ( ).F 2.2)

$1 = Cri1**2 .* I r I)JIJO,2) 4*NQ/LA - (NQ NU)APN(JN,JC+1,2))
228 T3 = C2tA2 * I(: 1?-JF, 7-JO, 11*M*NQ/LA - (NQ0NUI *

SpN( 12-J','-JO,1) I
229 !F (M.53.3)

5t1 = C'1 *2 I N(Il2-JI),7-J1,I)*M NQ/L - INlTAll *
$ DN(12-Jr h-JO, ) )

230 II ()).T . .2).AN).IM. -).I [1=0
231 IF ().LT...2) 13=3
232 IF (IABSIMI.GT. 1 T3=0
233 SUMCYC = TI+T2+T
234 SIIoYC =SUrYC*pI p3/P )*( NU-3) A85(ITOSTA-L l/(M-LAI)
235 IF ( I.F.5.I SUMCYC = SUMCYCA5/D
236 SFI) = UCr
237 SI) = Sill + SC(1)
238 IF I(.F0.1) C (I I =S CYC

239 5101 7CONTINE
C F4ND) FIRST CYCLPT 2 T7:'4
C QETUP:N TO rilGH-R P'EPqr HARMI1NIC

240 IF (.4 1 s,156,15
241 158 y=-M
242 GO TO 157
243 156 M = A)S(A1
244 IF IIA9S(')l.GT.3) Gc) T(' 1391
245 (C7) TO 157

C END PEIPN T III GHFT 2P, HAPMhNIC
246 121I CONTINIE
247 159 f1NTINUF

C SUBPPTGRAM FIIP P^IALIe. (GAIN
246 E=. 034
249 PLAT = LAT*I)rGUAF
250 X = SIItPLAT)

C INVI.I=[NARIA T LA ITU'!f
C )F=PATIO HOT PL ASA DNSITY FOP ENERGY>lOOEV TO COLD PLASA FENITY
C LAT=LATITUSE
C RT=NORMALIZLFD IACFrTIC FILD TO FOUATORIAL VALUF

251 RT=S-ifT(1*IX1*02/Il-A*2Al*3
252 PLI=PO/PS1
253 '0 5102 1=1,13
254 IF II .FQ.11 A=)4
255 IF (I.F.2 A5U=4
296 IF 1 .EQ.3) iJ=4
251 IF (1.E0.4) AU=4
258 IF sI.E1O.5 AU=5
259 IF (1.EQ.6) AU=5
260 IF (I.FQ.71 AU=5
261 IF (I.EQ.81 AU=6
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262 IF (1.E0.931 Al=
263 IF (I. 0.10) A(=6

264 IF (I.FQ.I =
265 IF (I.PQ.2 A =2

266 1F 11Q11. 3 AQ=4
267 IF (1.E0.4 ) A=6
268 IF (I.E0.5 I A 0=
269 IF (I.EQ.6 ) A =0
270 IF (1.E .6 1 AQ 2

271 IF (I.EQ.7 ) AQ=4
272 IF (I.tQ. ) AQ=0
273 IF I1.0.9 I AQ=2
274 IF (I.FQ.10) AQ=4
275 NU=AU
276 N41=AQ
277 COEFKC=-ANCIA h

l s) (
3. 14

1 5
92/8;

*
E*(1

/ B T I
**(N

Q
/2

I

278 PSUM=NOINUNol*(2+( 1-/L
A )

*
N Q

$ *PIR**(NU-)
27" PIK = -COEFKC*PSIJ
280 APVGC=SOPT(LIA) SQYT(I-LA)**3*2/IETA
281 PWIW-PKIK*APVGC*RINC

C AVGC AND APCGC = MODULUS HF GROUP VFLOCITIES(GENERAt AND PAtALELCASFSI

C NORMALIZED TO C
C WIW'S ARE IMIOMECAI/RE(OMA)
C PKIK=KIK FOR PAP LLEL PRO1PAGATION

282 PCOEFG=-160C3*8F*LA*nPIND/INVL**3
283 PG1000=PC'EFG *PK K

C END SUEPRUGRAM FOP PARALLEL GAIN

284 CnEFKI= COEFKC
$*CALPHA/( CPSTA)N*2

285 KIKLAN=COEFKISLI I
28h KIK=COFKI3*S(1)
287 KIKCYL=COFFK *SCh1 II
288 AVGC=S9RT(LA*(COSTAD )*(4*(COSTAD )I**2SINTA-**2)I

$ (ETA*COSTA+2*LAII-fLTA)I
289 COFWIW=AVGC*RIND
290 WIWLAN=-KIKLAN*CFFWTW
291 WIWCYI=-KIKCYI*C FIW

212 WIW=-KIK*COFWIW
293 CnEFG=-160000*LA*IT*

R I D
/IN

V
L**3

294 G1000 COFFGDKIK
295 G1000L=COFG*KIKLAN
296 Gl100C=COEFG*IKCYL
297 G1000S = GIOCO-G110L-G1300C
298 1F (AbS(PGL000.GT.1.E-30 ) RATIOG = G1000/PG1000

299 IF (IAS(PGIOOI.Lr.1.E-30 I RATIOG = 123456

300 IF (O.EQ.0) RATIOG=1

301 COEFGW = 8696*FKC*6.233184
302 PGW = CUEFGWWDTATG*PWIW
303 GW = COEFGW*DTTG.WIW
304 GWL = COFFGW*DTATGWIWLAN
305 GC = COEFGW*DTATG*WI CY1

306 PGWS(I) = PGWS(II oGW

307 GwS (II = GWS (I) + GW
308 GWSLilI = GWSt.(II + GWL
309 GWSC(I) = GWSCII( + GWC

310 GWSSII = GWS(I)-GWSLI,-GWSCII)
311 WRITE(6,430) GWSII),GWSL(I) GWSC( I,GWSSII),PGWSII),AUAQ

312 430 FORMAT(5E12.3,214)
313 5102 CONTINUE

314 IF (TG.EQ.TGLAST) GO TO 10001

315 GD TO 10000
316 909 STOP

317 END
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TABLE A.2. AN EXAMPLE OF THE COMPUTER OUTPUT OF THE PROGRAM LISTED IN TABLE A.1.

-4

CA
I0

A FKC= 8.7000 TGO= 0.0013000 TOLAST= 2.011502

L LAT LAMBDA THETA 8FTA OFNS TG MUCOS WLAN 4Cl
4.61105 24.11 0.5091 3.27 9.76 345 0.0204 19.51 3.672F 00 0.525E 00

GT GOWL GWC GWS PGW Nil Q
-0.606E 01 -0.190F-01 -0.603F 01 -3.898F-02 -0.6C61 01 4 0
-0. 757E-01 -0.882E-02 -0.70E-Ol )3.376E-02 -0.767F-01 4 2

0.784E 00 -0.507E-32 0.782F 00 0.709F-02 0.784E 00 4 4
0.660E 00 -0.304-302 0.657F 00 0.623E-02 0.660E 00 4 6

-0.328E 01 -0.124E-01 -0..326F 01 -0.707F-03 -0.327E 01 5 0
-3.349E-01 -0.321E-02 -0..319-01 0.204F-03 -0.3321-01 5 2

0.269E 00 -0.115E-02 0.290 00 0.391E-03 0.290 00 5 4
-0.149E 01 -0.730E-02 -).149F 01 -0.601-04 -0.149E 01 6 0
-0.1375-01 -0.1451-02 -0.123E-01 0.139E-04 -0.126F-01 6 2

j.958E-01 -0.379E-03 0.9621-01 0.245E-04 0.965E-31 6 4

L 1.AT L MBOA THETA BETA DENS TG MICDS WLAN l C1
4.61125 23.51 0.5214 2.94 10.07 342 0.0439 20.15 0.630E 00 0.506E 00

(;T GWL (W6 GWS PGW NIl Q
-0.135E 02 -0.375E-01 -0.135E 32 -0.173E-01 -0.135E 02 4 0
-0.359F 00 -0.175E-01 -0.349r 30 0.695E-02 -0.361F 00 4 2
0.16 01 -0.132E-01 0.167F 01 0.137E-01 0.161F 01 4 4
0.147E 01 -0.616E-02 0.1461 01 3.121E-01 0.147E 01 4 6

-0.776E 01 -0.252E-01 -0.773F 01 -0.141E-02 -0.776P 01 5 0
-0.173E 00 -0.661E-02 -0.167E 33 0.88E-03 -C.17GE 00 5 2

0.652E 00 -0.239F-02 0.651F 00 0.781F-03 0.654E 00 5 4
-0.376E O1 -0.151E-01 -0.375E 01 -0.127E-03 -0.376F 01 6 0

Ca -0.725E-01 -0.305E-02 -0.695E-01 0.271E-04 -0.703F-01 6 2
0.229E 00 -0.812F-03 0.230E 00 0.511-04 0.231F 00 6 4

L LAT I AWPDA THETA AFTA DENS TG MUCOS WLAN WCI4.61165 22.82 0.5490 2.52 10.44 330 0.0733 20.96 0.583E 00 0.393E 00
GWT GWL GwC GWS PGW NU 0

-0.236E 02 -0.557E-01 -0.236E 02 -3.248E-01 -0.236F 02 4 0
-0.105E 01 -0.261E-Ol -0.103E 01 0.952E-02 -0.105F 01 4 2

0.272E 01 -0.152E-01 0.272C 01 3.196E-01 0.272E 01 4 4
0.24F 31 -0.936E-02 0.253F 01 0.18OF-01 0.253E 01 4 6
-0.146E 02 -0.385E-01 -0.146E 02 -0.212E-02 -0.146E 02 5 0-0.550E 00 -0.103E-01 -0.540E 00 0.546E-03 -0.5451 00 5 2
0.114 01 -0.374E-02 0.114F 31 0.117E-02 0.115E 01 5 4
-0.772E1 01 -01.26-01 -0.769F 01 -0.196E-03 -0.772F 01 6 0
-0.253E 00 -0.486E-02 -0.248E 00 0.397E-04 -0.250E 00 6 2

0.435E 00 -0.132E-02 0.436E 00 0.800E-04 0.437E 00 6 4

8 LAT LAVBOA THETA BETA DEFNS TG MUiC3 WLAN IcI
4.61198 22.38 0.5631 2.24 10.66 336 0.0937 21.47 0.555E 00 0.334E 00

GWT GWL GEC GWS PGW NU 0
-0.310E 02 -0.661E-01 -0.309E 02 -0.288E-01 -0.310E 02 4 0
-0.169E 01 -0.310E-01 -0.167F 01 0.106E-01 -0.170E 01 4 2
0.342E 01 -0.182F-01 0.341F 01 0.228E-01 0.341E 01 4 4
0.330E 01 -0.112E-01 0.329F 01 0.212E-01l 0.329F 01 4 6

-0.201E 02 -0.463E-01 -0.200E 02 -0.252E-02 -0.201E 02 5 0
-0.932E 00 -0.124E-01 -0.923E 00. 0.627E-03 -0.926E 00 5 20.149E 01 -0.456E-02 0.149E 01 0.139E-02 0.150E 01 5 4
-0.111E 02 -0.287E-01 -0.111E 02 -0.237E-03 -0.111E 02 6 0
-0.452E 00 -0.600E-02 -3.446E 00 0.464E-04 -0.448E 00 6 2
0.593E 00 -0.165E-02 0.595E 00 0.975E-04 0.596E 00 6 4

L LAT LAMRDA THETA BETA DENS TO MUCOS WLAN WC1
4.61234 21.94 0.5770 1.97 10.89 334 0.1148 22.02 0.528E 00 0.284E 00



SWATFIV
C THIS PROGRAM CCMPUIES THE WHISTLER MODE WAVE AMPLITUDE GAINS IIN C8..

C INTEGRATED OVER A RAY PATH WHOSE PARAMETERS ARE GIVEN BY THF STANFCRD

C VLF GROUP RAY TRACING PROGRAM. POSITIVE (NEGATIVE GAIN MEANS AVE

C GROWTH(DAMPING). THE ENERGETIC ELECTRON DISTIBUTION IS EQUAL TO DE*

C (A/4*PI )*H(P-PH)*EXP(Q*(PI/Pl**NUQ*SINIALPHA)**2/BTI/P**NU,WHEPE
C ALPHA AND P ARE RFSPECTIVELY THE ELECTRON PITCH-ANGLE AND MHOMFTUM,

C H IS THF STEP FUNCTION, Al AND P=100OEVI ARE NORMALIZATION CKOSTANTS,

C RT IS THE MAGNETIC FIELD NORMALIZED TO THE EQUATORIAL VALUEt NU CAN

C TAKE ANY VALUE >4, O AND NUQ CAN TAKE ARBITRARY VALUES.

C
C INPUT:
C NU.C,NUQ ILINES 46 AND 471

C FREQUENCY OF THE WAVE(KHZI, INITIAL AND FINAL GROUP TIMES

C (LINES 58 AND 59)

C L VALUE. LATITUDFIDIG.), NORMALIZED FREQUENCY, WAVE PROPAGATION

C ANGLE(DEG.)I DENSITY(CM-3GROUP TIME(SEC) (LINES 69 AND 70).

C
C OUTPUT:

C FREQUENCY OF THE WAVEIKHZ), INITIAL AND FINAL GROUP TIMES

C L VALUE.LATITUDEIOEG. I, NORMALIZED FREQUENCY, WAVE PROPAGATION

C ANGLEIDEG.I, DENSITYICM-3)1 PLASMA FREQUENCY NORMALIZED TO

C ANGLEI)FG., DENSITY(CM-3,GROUP TIMF(SEC) (LINES 69 AND 731.

C GYROFRFQUENCY, PARALLEL COMPONENT OF REFRACTIVE INDEX, INIFUM

C RFSONANCE ENERGY FOR LANDAU AND FUNDAMENTAL CYCLOTRON INTER-

C ACTIONS (KEV), CO, 01. AND 02.

C GAINS INTEGRATEC FROM INITIAL TIME, INCLUCING RESPECTIVELY:

C HARMONICS M=O,1,2I LANDAU HARMONIC(M=0); FUNCAMENTAL CYCLOTRON

C HARMONICIM=II 1 2ND CYCLOTRON HARMONIC(M=21; PARALLEL PROPAGA-

C TION APPROXIMATICN.

C
C LIMITS:
C HIGH PASMA FREQUFNCY APPROXIMATION FOR REFRACTIVE INDEX, BUT

C INCLUDE IONS. RELATIVITY NOT INCLUDED.

C THE INTERVAL OF INTEGRATION IS DTATG=0.02 SEC

C OR MORE AND CAN BE CHANGED APPROPRIATELY IN LINES 75 AND 76.

C THF DISTRIBUTION FUNCTION IS NORMALIZED TO DE=0.004, WHERE

C DE=RATIO HOT PLASMA DENSITY FOR FNERGY>IOOFV TO COLD PLASMA

C DENSITY: CHOSE APPROPRIATE VALUE OF DE IN LINE 98.

C THIS PROGRAM IS APPROXIMATE AND ONLY VALID FOR NEAR

C PARALLEL PROPAGATION. HARMONIC OF ORDER M CAN BE CONSIDERED

C AS APPROXIMATELY CORRECT WHEN DM<0.3 WHERE DM=DO.Di,D2 IF

C M=0.1.2.
C CHOSE APPROPRIATE VALUE OF PH IN LINE I87.

C
C FUNCTION FACTORIAL

I FUNCTICN FFFIN)

2 IF (N.FQ.OI GO TO 2

3 FFF=1
4 DO 1 I=,N

5 1 FFF=FFFF*I
6 GO TO 3
7 2 FFF=I
8 3 RETURN
9 END

10 FUNCTION ANQINU,NBQ
11 ANC=I
12 JCP=NO/2+I
13 0O 11 JO=1,JOM

14 1I ANQ=(FEOATIJQ)-0.5)*ANQ
15 ANQ=ANQ*2*(NU-31/FFFINQ/2)
16 RFTURN
17 FND

18 FUNCTION SNQOIUN,NQI
19 BONQ=
20 JOM=NO/2+1
21 DO 10 JO=1,JQM

22 10 PNQ=NOQ/(UN/2.-2.+FLOAT(JQ))
23 BNQ=FFFIN/2)*BNO/2
24 RETURN
25 END

TABLE A.3. LISTING OF THE PROGRAM TO COMPUTE THE GAIN INTEGRATED ALONG

A RAY PATH FOR NONSEPARABLE DISTRIBUTIONS AND SMALL WAVE

NORMAL ANGLE.
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26 FUNCTION 3NOTIUN.NQ.PI
27 9NOT = P**IUN-21/(UN-2)
28 IF (NO.FQ.OI GO TO 8
2 NCM = NO/2
30 00 9 M=10NQM
31 11 BNOT = BNOT +(-1)r*MAIFFFINQ/Z)I/(FFFIMI*FFFINO/2-MI)

S * P*a(UN-2+2*M)/(UN-2+2M
32 9 CONTINUE
33 8 CONTINUF
34 RETURN
35 END

36 REAL KIKS
37 REAL NC
3F RCAL KIKLU
39 RFAL KIK.KIKLAN,KIKCY1
40 RFAL LA,KIG
41 RFAL INVL
42 REAL LAT
43 REAL KIKL.KIKC.KIKCU
44 PRAL NU
45 LOGICAL TRUC
46 REAP(5,199) NU.NO,QN
47 199 FOPMAT(3FIO.6)
48 WRITF(6.1981 NU.NQ,N
49 198 FORMAT( ' U=',FLO.3.'O= ,FIO.3,'NUQ=',FIO.3)
50 PIPI=3.141592
51 A=I./(NU-3)
52 h=O
53 2000 N=NI1
54 ANFW = NJ *-N2.*(2*I N) FFFII IEFF2CN+NIIINU-3,NQNI)
55 A = A + ANEW
56 IF IARS(ANFWI/ABS(A).GT..O01) GO TC 2000
57 2001 A = 1./A

C RFAD INPUT nATA FRCM COLD PLASMA RAY TRACING
58 10001 RFAO (5,460,ENn=g99j FKC.TGNEWTGLAST
59 460 FORMATIFIO.4,F1O.6,FIO.6)
60 WRITEI6,4550) FKC ,TGNEW,TGLAST
61 4550 FORMATI'IFKC=

'
, F10J4. * TGO=-,FIO.6,, TGLAST=I,FlO.6)

C FKC 15 FRFQUENCY SIGNAL IN KHZ
62 TRUC = .'ALSE.
63 PGSUP = 0.
64 GWTSUM=O.
65 GWLSUM=O.
66 GWCSUM=0.
67 GWLUS=O.
68 GWSSUM = n.
69 GWCUSM=O.
70 10000 PRAD(5.490) INVL,LATLTIHETA,IDENS.TG
71 490 FCRMATIFlO.5.F10.2,FIO.4.FlO.2,I10 FIO.6)
72 TRUC .= .NOT.TRUC
73 IF (TRUCI TGOLD=TG
74 Ic I.'OT.TRUC) TGNE.=TG
75 nTATG = ABS (TGNEW-TGnLAo
76 IF I(TATG.LT.0.02) TAUC = .NOT. TRUC
77 IF (OTATG.LT.T.02) GO TO 10000
78 OFGRAn = 3.141592/l180
79 THCTAP = THFTA*IDGRAD
80 RFTA = LA*8.984*SURT(FLOAT(IENSI)/FKC
81 CCI = I1-LAI-TAN(THFTARI
82 CLAN = LA*TAN(THOTAR)

C IENS IS DFnrSITY IN PARTICLES/CUBIC CENTIMETERS
C FETA=PLASMA 4REQUF5CY/GYRYREFQUENCY
C LA=6AVE FRFOUENCY/GY(FRFCUrNCY
C THFTA=ANGLe Or PRPAGATION 4ITH RESPECT TITF MAGNETIC FIFLD
C END OF COLt PLASMA PARAMETER CECLARATION

83 COSTA = ABS(CIlSITHETAA)I
R4 SINT = ARSR(ISIIliETA)
85 OFLTA =1-1I/43LAI)*2
86 CSTgAn = CPSTA-LA OELTA
87 TALPHA=SINTA/(2I(CnSTA II

C THFTA -coF IS FXPFSS
0  

I" DFG-EFS
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8R CALPHA=/SQRT(1+TALPH
4
*2)

89 RIND = BETA/SORT((COSTA-LA*0FLTAI*LA)
C RINO=REFRACTIVE INDEX

90 PIO=.02
91 PRINO=BETA/SORTI(IL-LA)*LA

C PRIN=PARALLFL REFRACTIVE INDEX

92 RPAR= RINO*COSTA
93 RPFR=IND4SINTA
94 H = COSTA*(l/LA-LAI
95 SC = BFTA**2 / (LA*(1-LA**2))

96 SP=-(BETA/LA)**2
C SP = STIX P PARAMETER

SI PRIWAI = (I-LA)/(PPAR*LA)
C PRIWAT IS THE FUND. MOMENTUM OF RESONANCE

C SUBPROGPAM FOR PARALLEL GAIN

o9 DE=.004
99 PLAT = LAT*DEGRAD

100 X = SIN(RLAT)
C INVL=INVAPIANT LATITUDE
C DF=RATIO HOT PLASMA DENSITY FOR ENERGY>IOOFV TO COLC PLASMA DFNSITY

C LAT=LATITUDF
C BT=NORMALIZEC MAGNETIC FIFL TO EQUATORIAL VALUE

101 BT=SQRT(II3*X**2)/(I1-**
2 )

**3

102 PRP=ABS(LA-1)/IPRINC*LA)
103 PPR = PIO/PRP
104 COEFKC = -A*(PIPI/8)*DE
105 PKIK = PPR*-(NIJ-3) *IPIPI/4)*DEBNQ( NLO)

106 N=O
IC7 1000 -N+Il
iCe PKIKNW = (I L/BTIIN-(* N ) * PPR**(NU-3+N*QNI*

$ (PIPI/4)jDE*(INQ*N/FFF(N) * BNQ(NU+NeQN.2*N)

109 PKIK = PKIK + PKIKNW
110 IF (ABSIPKIKNWI/ABSIPKIK) .GT..001)

S GO TO 1000

111 5=1
112 AKIK = (I/BT)**N*-N/LA I * PPR**(NU-3+N*ON)*

$ (pIPI/4)*TE*(NQ**N/FFF(II) * BNQINUtNRON,2*N)

113 D10C N=N+L
114 AKIKNW = (II/TIARN*(-N/LA I A PPR**(NU-3+N*QN1

S (PIPI/4)*DF*(NO**N/FFF(N)) * BNO(NU+NQON,2*N)

115 AKIK = AKIK + AKIKNW

116 IF IABS(AKIKNWI)ARSIAKIKI .GT..001)
S GO TO 1001

117 PKIK = A # IPKIK+AKIK)
118 APVGC=SQUPTILAI SORT(1-LAIt*32/6ETA

119 AVGC=SORTILA*ICOSTAD II I(COSTA I)**2SINTA-*2II/
$ (BFTA*COSTA+2*LA*IL-CFLTAI)

120 PWIW=-PKIKRAPVGC*RIND
C AVGC AND APCGC = MODULUS OF GROUP VELOCITIESIGENFRAL AND PARALLFLCASESI

C NORFALIZED TO C
C WI.*S ARF IMIC( EGA)/RF(GMEGA)
C PKIK=KIK FOR oARALLLt PROPAGATION

121 PCOEFG
=-

160000A
T *

LA-
o R I N

N /INVL*-3

122 PG1000=PCOEFG4PKIK
123 PRIWAT = (I-LA)/(RPAR*LA)

C PRIWAT IS THF FUND. MOMENTUM OF RESONANCE

C PR1=MCMFNTUM FPR PARALLEL PRCPAGATION

124 WO = 512.

125 WCI = WO-(PRIWAT)**2/2
126 PROWAT = 1/RPAR
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127 WLAN = WUO(PROWAT)I*2/2
C PROWAT IS THF RESONANCE MOMENTUM FOR LANDAU INTERACTION

128 RWC1WL = WC1/WLAN
C 60=O0*C**2
C WC1 AND WLAN ARE RESPECTIVFLY ThE MINIMUM ENERGIES OF RESONFANCF FCR
C FUNDAMFNTAL AND LANDAU RESONANCES (IN KEVI

129 00 = LA*SINTA/COSTA
130 ni = (1-LAISINTA/COSTA
131 D2 = (2-LASISINTA/CUSTA
132 00=ABSD(0)
133 OI=ARS(D1)
134 02=ABS1D2)
135 WRITFI(6,25
136 25 FORMAT('O L LAT LA THFTA BETA DE

NS TG MUCOS WLAN WCI CO 1D 2'1
137 WRITFI6.26)1NVLLATLA,THETA,BETA,IOENS,TG,RPARWLAN,WCIO,DI,D2
138 26 FORMAT(5F0O.4,110,FIO.4,FIO.2,2E11.3,3F5.2I
139 CO = 2*ABSISP)
140 C1L = C RPAR*RPER/CO)**2
141 C2L = RPAR RPER H*SO/CO**2
142 C3L = (SD*H/COI~*2
143 C11 = ((BETA/LAI**2*(1+CCSTA)+RPER**2*LA/I/CO
144 C21 = (IB'TA/LA I*2(I+CCSTA)RPER*~2*LA/2)/CO
145 PRO=1/RPAR
146 PRI=(1-LAl/ILA*RPARI
147 POR = P10/IPRO
148 P1R = PIO/PRI
149 PR2 = (2-LA)/(LA*RPARI
15C P2R = P10/PR2

C BEGIN LANDAU TERM
151 SL = -NU*(COSTA/LA-I)*IPORI**INU-3)*4

$R*CIL*NCI(NU+2,0)-C2L*BNCINU,2)POG+ PNO(NU-2,4)0O**2*C3L/4)
152 N=O
153 300C hNN+l
154 SLNW = -(I/RT)P*N*INO**N/FFF(N))* (NU+2*N+N*CN)*(POR)*INU-3+N*CNI

S *4*(COSTA/LA-11) * I CL*BNOINU+N*ON+2,2*NI - C2L*RNO(NUNCN
12PN+2)0o+ C3L*RNO(NU+N*CN-2.4 Z*N)*DO**2/4)

155 SL = SL+SLNW
156 IF (ABSI)LN)/SABSI SL) .GT..0011 GO TO 3000

C FND LANDAU TERM
L57 SLU= -NU*ICOSTA/LA-1)*IPCR)**(NU-3)*4 *(CIL*BNC(NU+2,0)1
158 =O0
159 2599 N=N+l
160 SIUNW= -l/BT)**N*(NQ**N/FFF(N))* (NU+*ZN+N*CNIP(POR)*(NU-3+N*CN)

6 *4*(COSTA/LA-1) * ( CIL*BNQ(NU+N*QN+2,2*N)
161 SLU= SLU+SLUNW
162 IF (ABSISLUNW)/ARS(SLUI.GT..OOI) GO TO 2999

C 8GIN IST CYCLOTRON HARMONIC

163 SC = -PIP*-(NU-3) * ((COSTA-LA)/(1-LA)I * C11*2
$ *(NU*+NO(NU,21 -. 50n1DI**2NUBNQINU-2,4) 1

164 N=0
165 3001 N=N+1
166 SCNW = -PlR*(NU+N*ON-3)*(ICOSTA-LA)/(I-LA)*CIIl**2*1/8TI)*N

1 * NO**N/FPFIN))*
B ( INU+2*N+N*CN *dNOINU+N*QN,2+2*N)-.50*D1**2*(NU+2*N+N*QN)
S * fNO(NU-2+N*CN,4+2*N)

167 SC = SC.SCNW
168 IF (ABSISCNW)/AlSI SC) .GT..001) GO TO 3001
169 N=
170 ASC = P1R*I(NU+N*CN-3)*((COSTA-LA)/(I-LA))*C **2*)1/BTI**N
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S *INOt*N/PFF(INI1 ( 2t%,BNCNU+N*N,2*N I/LA-C.50Dl1**2

$ "*24N NQINU+N*QN-2,2* +21/LAI )

171 3002 h=N+1
172 ASCNW= PIR**(NU+N*N-3)*(IC(CSTA-LAI/(-LAI)*C11**2*I1/RTI*N

$ *INQ-*N/FFF(NIIe I 
2
N-RNQC(NU+N*ON,2N)/LA

- C
.50*2DI*2

S *12*K*3KO(NU+N*QN-2.,2*+2)/LA) )

173 ARC = ASC-ASCNW

174 IF (APS(ASCNW)/A1SIASC) .GT..001) Gn TO 3002

C FNS 1ST CYCLCTRON HARMONIC
C BEGIN 2ND CYCLOTRON HARMONIC

175 SC2= -P2R*-*NU-3) * ((COSTA-LA)/(2-LAI) * C21**2

$ * NU*INC(NU-2,41D2*2/4
176 N=0
177 3004 N=N+1
178 SC2NW= -P2r**(NU+N*ON-3)*((C

OS T
A
- L

AI/IZ
- L A

)*
C 2

1**2*IL/TI*
N

$ *(NO**N/FFFINI)*
S 02**2*(NU+2*N+N*QN)*N5(NU-2.N*0N,4+2*N)/4

179 SC2 = C52 + SC2Nw
180 IF (ABS(SC2NWI/ARS(SC2) .GT..001 I GO TO 3004

le1 N=1
182 ASC2= P2R**INU+N*N-3)*(ICOSTA-LA)/12

- L A ) I
*
C 2
1**2*(1/8T1**N

I *(NO**N/FFF(N)* (D02*2/14)*
$ 4*N*RQO(NU+N*CN-2.2*N+?)/LA

183 3005 N=N+1
184 ASC2NW=P2R**(NU+NON-3)

( I C
OSTA-LA

)
/12-LA))*

C2 1
**2*I/BT**N

s *(NO**N/FFFIN))* (02 *2/4*
S 4*N*NQ(NU+N*CN-2 ,2*N+2/LA

1E5 ASC2 = ASC2 + ASC2NW
186 IF (ARSIASC2NWI/A B(ASC2) .GT. .001) GO TO 3005

C ENC 2ND CYCLCTRON HARMONIC
187 COFFKI = COFFKC*CALPHA/CGSTA**2
188 KIKL = CIOFFKI*SL
189 ITKC = COEFKII(SC+ASCI

190 P1PMIN=2.24
191 PIPMIN=PIPMIN/P1R

192 IF (PIPMIN.GT..) GO TO 293

193 CN = BROT(NU.0.PIPMIN)
194 M=0
195 20C5 M=M+I

196 CNNW = NQO*M*PlPMIN**(M*CN)*BNQTINU+M*QN,2*MPIPMI
N )

/F
F F

(M)

197 CN = CN+CNNW
198 IF(ABS(CNNWI/ABS(CN).GT.0.001) GO TO 2005

199 PIPMIN=1l
200 CD = BNOT(NU.0,PIPMINI
201 M=0
202 2006 M=M+1
203 CDNW = NO**M*PIPMIN**IM*QN)*8N0T(NU+M*QN,2*MP1FMIN)/FFF(mI
204 CD = CD+CDNW
205 IFIABSICONW)/ABSICOI.GT.0.0011 GO TO 2006

206 COEF = CN/CD
207 KTKC = KIKC*COEF
208 293 CONTINUE
209 KIK=KIKL+KIKC
210 COEFG = -16OOOO*LA*BT*RIKC/INVL**3
211 G1000 = COEFG * KIK

212 KIKS = COEFKI ISC2+ASC2)

213 G1000L= COEFG * KIKL
214 GC000C= COEFG * KIKC
215 GOO00S = COEFG*KIKS
216 KIKLU = COEFKI*SLU
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217 GLU = COFFG*KIKLU
218 GCU = PG1000*(ICOSTA-LAI/(I-LA)l*ICALPHA/COSTA**2*(RIND/PRIND)

$ *C1**2*IPPR/PIP)**(NU-3)

219 KIKCU = GCU / COEFG

220 APVGC=SORTILA)* SORTI1-LA)**3*2/BETA
221 PWIW=-PKIKAAPVGCtPRINO
222 WIWT = -KIK *AVGC*PIND

223 WIWL =- KIKL*AVGC*RIND

224 WIWC = -KIKC*AVGC*RIN
225 WIWLU = -KIKLU*AVGC*RIND
226 WIWCU = -KIKCU*AVGC*RIND
227 WIWS = -KIKS*AVGC*RIND

C AVGC AND APCGC = MODULUS OF GROUP VELOCITIES(GENERAL AND PARALLELCASESI
C NORMALIZED TO C
C WIW'S ARF IM(CMEGA)/RE(CMEGA)
C PKIK=KIK FCR PARALLEL PROPAGATION

228 PCOEF=-160000BT*LA*PRIND /INVL**3

229 PG1000=PCOEFG*PKIK
230 COEFGW.= 8686AFKC*6.2831e4
231 PGW = COEFGW*DTATG*PWIW

232 CCC = COEFGW*DTATG
233 GWT = CCC*WIAT
234 GWL = CCC*WIWL
235 GWC = CCC*WIWC
236 GWLU = CCC*WIWLU
237 GWCU = CCC*WIWCU
238 GWS = CCC*WIWS

239 PGWSUM = PGWSUM + PGW
240 GWSSUM = GWSSUM + GwS
241 GWTSUM = GTSUM . GWT
242 GWLSUM = GWLSUM + GWL
243 GWCSUM = GkCSUM + GWC
244 GWLUSM = GALUSM + GWLU
245 GCUSM = GWCUSM + GWCU
246 PRINT 703

247 703 FORMAT(' GWT GWL GWCI GWC2 PG')

248 WRITEI6,430) GWTSUM.GWLSUM,GWCSUM.GWSSUMPGWSUM
249 430 FORMAT(5F11.31
250 IF (TG.EQ.TGLAST) GO TO l0001
251 GO TO L0000
252 999 STOP
253 FND
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TABLE A.4. AN EXAMPLE OF THE COMPUTER OUTPUT OF THE PROGRAM LISTED IN TABLE A.3.

FKC= 80.0C00 TGO= 0.C00100 TGLAST= 0.524752

L LAT LA THETA aFTA nFNS TG MUC0S WLAN WCi DO D0 02

3.9623 47.5900 0.329 -13.3700 1.0544 811 0.0215 2.22 0.517E 02 0.214E 03 0.08 0.16 0.40

GT GWL GWC1 GWC2 PGW
-0.703c-C2 -C.351F-C2 -0.352E-02 -0.373E-C4 -0.3850-02

L LAT LA THFTA BETA DFNS TG MUCOS wLAN WCL 00 DL 02
3.9620 43.1400 0.5815 -4.6200 1.5754 552 0.0429 3.19 0.25LE 02 0.130E 02 0.05 0.03 O.11

GWT GkL GwCi GwC2 PGW
-0.486E-Cl -0.528F-C2 -0.433E-01 -0.503F-04 -0.439E-01

L LAT LA THFTA SETA OFNS TG MUCOS WLAN WC1 00 (1 02
3.9150 40.4900 0.7404 -6.600 1.8979 521 0.0652 4.35 0.135E 02 0.166E 01 0.09 0.03 0.15
GT GL GwCL GC2 PGw

-0.2730 CC -C.152E-Cl -C.257C Cu -0.380E-04 -0.258E CO

L tAT LA THOTA HETA DENS TG MUCOS WLAN WC1 00 01 02
3.8114 38.42C0 0.8364 -10.93)0 2.0898 495 0.0938 5.87 0.743E 01 0.284E 00 0.16 0.03 0.22

G1T GWL GWC1 G C2 PGW

-0.1438 Cl -C.880E-01 -0.134F 01 -0.211F-C3 -0.129E 01

L LAT LA THFTA RrET DENS TG MUCCS WLAN WCL 00 01 02

3.6766 36.6700 0.9832 -13.6600 2.1865 486 0.1270 7.57 0.446E O1 0.781E-01 0.21 0.03 0.27
GWT GL GWCL GWC2 PGW

** -0.528 01 -0.324E 00 -0.496E 01 -0.4CRE-C3 -0.433E 01

L LAT LA THETA BETA DENS T MUCCS WLAN WC1 00 D1 D02

3.5797 35.5500 0.9CGO -15.0700 2.2258 485 0.1529 8.E0 0.330E 01 0.408E-01 0.24 0.03 0.30

GT wL GWC1 GWC2 PGW
-O. C6F 02 -0.633F 00 -0.5925 01 -0.585-03 -0.7q9F 01

L LAT LA ThETA BETA DENS TG MUCCS WLAN WCI 00 01 02

3.4549 34.1500 0.9116 -16.6000 2.2568 486 0.1907 10.41 0.236E 01 0.222E-01 0.27 0.03 0.32

GWT OWL GWCI G.C 2 PGW
-0.244F C2 -C.142F 01 -0.230F U2 -0.S2-C3 -0.L58E 02

L LAT LA THCT0 IETA DENS 1G MUCOS WLAN WC1 00 01 02
3.3784 33.2900 0.9150 -17.4600 2.2699 488 0.2172 11.39 0.197E 01 0.170E-01 0.29 0.03 0.34

GWT OWL GrCi GWC2 PGW
-0.357F 02 -0.217 Cl -0.336E 02 -0.114E-02 -0.221E 02

L LAT LA IHcTA sETA DENS TG MUCCS WLAN WCL 00 01 02
3.2894 32.2700 0.9164 -18.4200 2.2804 491 0.2522 12.45 0.165E O1 0.137F-01 0.31 0.03 0.36
GWT GWL GWCI GWC2 PGW

-0.519F 02 -0.352E 01 -0.484E 32 -0.151F-C2 -0.313F 02

L LAT LA THFTA BETA DENS TG MUCOS WLAN WC1 00 01 02
3.1840 31.0200 0.9154 -19.5400 2.2871 495 0.3004 13.56 0.139E 01 0.119E-01 0.32 0.03 0.38
GT GWL GWCI GWC2 PGW

-0.7628 02 -C.614E 01 -0.7C1F 02 -0.216F-02 -0.4448 02

L LAT LA THTA BETA DENS TG MUCCS WLAN WC1 DO D1 D2

3.1245 30.2900 0.9138 -20.1700 2.2901 498 0.3315 14.09 0.129E 01 0.115E-01 0.34 0.03 0.40

GWT OWL GWC1 GWC2 PGW
-0.929F C2 -C.816F 01 -0.847E 02 -0.263F-C2 -0.527F 02

L LAT LA THETA BETA DENS TG MUCTS WLAN WC1 00 01 02

3.0579 29.4500 0.9112 -20.9000 2.2927 502 0.3704 14.61 0.120E 01 0.114E-01 0.35 0.03 0.42

SGWT G6L GWCL WC2 PGW



APPENDIX B. POSSIBLE TRAPPING BY A NATURAL WHISTLER

When a whistler is emitted by a lightning discharge of duration much

shorter than the trapping time, the question arises whether the wave can

change the trajectory of the particle enough to trap it. We make an

analysis here on the assumption that the medium is one dimensional (axis

Oz along B ). The interaction is only important around the equator,

and the propagation is parallel (for nonparallel propagation the wave

propagates across L shells and interacts during a shorter time with

particles compelled to drift along magnetic field lines than for parallel

propagation).

Cyclotron trapping:

In this case we assume parallel propagation. Let us suppose that

at some point
Vil = VR (B.1)

where

c (B.2)
R k

v = parallel velocity of an electron.

Along the lines of Dysthe [1971] and Sudan and Ott [1971], we will

consider the particle as trapped (see Section 2B) if the condition

d- (v -v ) = 0 (B.3)
dt II R

can be realized during a trapping time Tc = 2tn(clk -1/2 or corre-

spondingly along a length L = vlT as the particle moves.

We can write Eq. (B.3) as:

Av = Av R  (B.4)
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where Avll and Av R  represent the variations of vIIR as the particle

travels Az.

hvl is the sum of two terms depending upon:

1. the interaction of the wave on the particle (depends on the

angle p between v and B1 );

2. the variation of the static magnetic field, i.e., particle

mirroring.

2

Av v 2 sin - 1 1 c Az. (B.5)
11 v , clv i 2wc dz

dvR  is the sum of two terms depending upon:

1. the variation of electron gyrofrequency with distance (because

of the medium inhomogeneity);

2. the variation of wave frequency with distance (because of wave

dispersion)

3 1 1 dwp dw

R 2 w -w w dw z - dz z k wd v (B.6)

c p c g c

d7 - +w 7n (B.7)
dz VI t- +

(electron and wave are counterstreaming).

The whistler time delay is given by

T1(z,L) = f -- (B.8)

zO g

so that:

a, -1/vg/Vg

1 (B.9)

We see from Eqs. (B.5) and (B.6) that Eq. (B.4) is fulfilled if,

i - a -w dw dw v

kv c > V R + c ptan cp dp d +  + 1 l/ . (B.10)
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Around the equator:

c CE 1 + 29. (B.11)
c cE RE

and we assume u0 - constant.
p

According to Eq. (B.11), the variation of c is a second order
c

quantity in (z/RE ) around the equator. The variation of wD is a first-

order quantity but for D - 0; therefore, we can neglect the first term

in the RHS of Eq. (B.10) and express 6r/&D at the equator (w - 0).

We use the hyperbola approximation for the whistler dispersion [Bernard,

19731:

D CE -AwDm cE-A

TE 2 /W(c -cE)

RE pE

Dom - d , (B.12)
Oml / -_

cE

and for the D.E. model the values of the dimensionless parameters A and

d are [Bernard, 1973]:

A - .25,

d .7 . (B.13)

Using Eq. (B.13) we get:

D w (3C-C )-AC(CIcD )E Dom cE CE )-A(+cE (B14)
S- 4 3/2 ( 2 (B.14)

cE

which can be inserted into Eq. (B.10) (neglecting duc/dz) to yield:

2 4W2 ( 1/2 1/2
cE cE cE

ktan > 1 + E (B.15)t 1  2CD R d [C (3C -CE )-Aw(a--ED )]EO cE cE cE

Whistlers trigger emissions primarily at - wcE /2 and also at

lower frequencies at the bottom of whistler traces.
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As an example, we choose w = cE/2, a = 30 , L = 3, and

= 2n/k = 2 km. Then Eq. (B.15) reads

c-- - 3.5X10 4  (B.16)

cE

for

BOE  1.2X10-5Wb/m 2 , B 1  410-10Wb/m 2 . (B.17)

The minimum field required to have trapping is excessively high

compared to typical values (B1 - 10-12-10-11Wb/m). For a frequency

where b6r/w is comparable to, or higher than, its value at wCE/2,

trapping would need the same order of magnitude for B .

Low frequencies are not more favorable either because here

k P V decreases with frequency and v increases. This makes it
C/T R

c
more difficult for inequality (B.10) to be fulfilled.

The RHS of Eq. (B.10) may vanish at a point off the equator. In

this case approximations (B.11) to (B.12) are no longer valid, and a

more refined analysis should be made.

Landau trapping:

The Gendrin mode is the most favorable for trapping because the

group velocity and resonant velocity are equal and ray direction and

particle drift directions are the same. As we are concerned here with

ducted whistlers, we will suppose cos6 - 1.

Computations similar to those above yield:

v (B.18)
R k

eE v d 1

Av = 1 sin(kz-wt) z 1 c , (B.19)
II M v v 2w dz
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AVR 11 1 p dwc 1 1 d(B.20)
R 2 - L dM dz kv dzR p c g

A condition similar to Eq. (B.10) is found for the minimum

field amplitude required for trapping.

eE k I (tand ) dw (v
S> v tan 2c 1de d/ . (B.21)

M R 2m w dw dz v v R7
c p c g R

This time, v v and the wave dispersion can be neglected, and
R g

the space inhomogeneity is more effective in preventing trapping.

Neglecting the wave dispersion, Eq. (B.21) can be fulfilled up to a

certain distance z from the equator given by:

-1
EzRd) -1 da 2teE1z -1 2 w a P 1-< ( ) tan a E  (B.22)R - cE R 2E w dw 9? MR

E c p c wE

Let us take the same example as previously Xw = 2km, w = cE/2,

CL = 45 ° , and L = 3.

E = E VpB sinG (B.23)
1 z p 1

Eq. (B.22) reads

z 10
< 1.610 Blsing (B.24)

RE

There will be trapping if this value is bigger than a trapping length.

For a ducted whistler, e < 300 and trapping would require a minimum

field of

B 1 - 410-11Wb/m2 (B.25)

This field is still high compared to typical values.
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APPENDIX C. HOT PLASMA CORRECTION TO THE REAL PART

OF THE REFRACTIVE INDEX

The refractive index is given by the expression:

2  Om 2 2
kdv

N - k v -c g 0 dv dv, (C.1)2)2 --i- C1 1)

W 2 (kv, -cD+C ) kv- c

kvl

For small v we treat - as a first order quantity and we arrive
I CD -D

C

at:

2 2 2 2
CD CDC aC v

2 p pc 2  2 p 2 1
N 1 + + k < v > k < >

c(CD -) 3 2 (I 2 2 2

c (C.2)

where:

20 g0d
3 v

I< IV > = V god

We rewrite Eq. (C.2) as:

2 2
N cN (1 + cH) , (C.3)

where:
2 v 2  A v2

S =  + < > < >
H(A) 3  c 2 c

and where N 2  is the cold plasma refractive index expression.
c

2 1 2
For isotropic distributions, < v11 > = < v > and eH reduces

to
2 v 2P' II

H =  + < - > (C.4)
2(1-A)

This result was already derived by Guthart [1964] where he chose for

90 a Maxwellian distribution for which < v >-= 2KT/M.

Equation (C.4) is also given by the full adiabatic macroscopic

theory [Quemada, 1968].
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We choose now Eq. (3.6) for go. Then

2 B A Iv
H 3q q b-q/2 (1-A)(q+2) H (C.5)

(A) 3 (v-5)(q+3) 2 6EH

As an example, we chose V = 6 and q = 6 (the distribution is thought

to be quite anisotropic towards low energies) and evaluate roughly the

corrective term GHE at the equator where the contribution to whistler

dispersion is most important:

-P
C -6-_ 2 (v (C.6)fHE A)3 EH c (.6)

-1
With WH = 10 eV, at L - 4, 6 10, 6EH ~ 10 (for v = 6)

and

-4
HE (A << 1) ~ - 4x10 ,

-3
HE (A - 0.5) - 4x10 -3. (C.7)

Such a difference in the dispersion would be unnoticeable.

Unfortunately, a similar computation for e / 0 becomes fairly

complex as a cubic equation has to be solved. This was done by Wang

[19703 for the scalar pressure theory [Denisse and Delacroix, 1963]. He

found corrections became important close to the resonance cone, as

expected. A solution for e ' 0 will contain terms such as Eq. (C.6) but

where 1-A is replaced by cose-A and eH increases very rapidly for

6e eR. Wang's [19701 computations could be improved using the full

adiabatic theory [Quemada, 1968].
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